Skip to main content

Error Sources

  • Chapter
  • First Online:
Industrial X-Ray Computed Tomography

Abstract

In this chapter, an identification and classification of influence factors in X-ray computed tomography metrology is given. A description of image artefacts commonly encountered in industrial X-ray computed tomography is presented together with their quantification. A survey of hardware and software methods developed for correcting image artefacts is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu Anas EM, Kim J, Lee S, Hasan Mdk (2011) Comparison of ring artifact removal methods using flat panel detector based CT images. Biomed Eng onLine 10:72

    Google Scholar 

  • Aloisi V, Carmignato S, Schlecht J, Ferley E (2017) Investigation on the effects of X-ray CT system geometrical misalignments on dimensional measurement errors. In: 7th conference on industrial computed tomography (iCT), 7–9 Feb, Leuven, Belgium

    Google Scholar 

  • Angel J, De Chiffre L, Kruth JP, Tan Y, Dewulf W (2015) Performance evaluation of CT measurements made on step gauges using statistical methodologies, CIRP J Manuf Sci Technol 11:68–72

    Google Scholar 

  • Angel J, De Chiffre L (2014) Comparison on computed tomography using industrial items. CIRP Ann Manuf Technol 63(1):473–476

    Google Scholar 

  • Arenhart F, Baldo CR, Fernandes TL,  Donatelli GD (2016a) Experimental investigation of the influencing factors on the structural resolution for dimensional measurements with CT systems. In: 6th conference on industrial computed tomography, Wels, p 12.

    Google Scholar 

  • Arenhart FA, Nardelli VC, Donatelli GD (2016b) Comparison of surface-based and image-based quality metrics for the analysis of dimensional computed tomography data. Case Stud Nondestruct Test Eval

    Google Scholar 

  • Bartscher M, Sato O, Härtig F, Neuschaefer-Rube U (2014) Current state of standardization in the field of dimensional computed tomography. Meas Sci Technol 25(6)

    Google Scholar 

  • Bartscher M, Staude A, Ehrig K, Ramsey A (2012) The influence of data filtering on dimensional measurements with CT. 18th WCNDT—World conference on nondestructive testing, pp 16–20 

    Google Scholar 

  • Bequé D, Nuyts J, Bormans G, Suetens P, Dupont P (2003) Characterization of pinhole SPECT acquisition geometry. IEEE Trans Med Imaging 22(5):599–612

    Google Scholar 

  • Bor D, Birgul O, Onal U, Olgar T (2016) Investigation of grid performance using simple image quality tests. J Med Phys 41(1):21–8

    Google Scholar 

  • Borges de Oliveira F, Stolfi A, Bartscher M, De Chiffre L (2016) Experimental investigation of surface determination process on multi-material components for dimensional computed tomography. Case Stud Nondestruct Test Eval 6(Part B):93–103. doi:10.1016/j.csndt.2016.04.003

  • Brunke O (2016) Recent developments of hard-and software for industrial CT systems. In: 6th conference on industrial computed tomography (iCT), 9–12 Feb, Wels, Austria

    Google Scholar 

  • Carmignato S, Aloisi V, Medeossi F, Zanini F, Savio E (2017) Influence of surface roughness on computed tomography dimensional measurements. CIRP Ann Manuf Technol 66(1):499–502. doi:10.1016/j.cirp.2017.04.067

  • Davis GR, Elliott JC (1997) X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image. Nucl Instrum Methods Phys Res Sect A 394(1-2):157–162

    Google Scholar 

  • De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Annals 63(2):655–677. doi:10.1016/j.cirp.2014.05.011

  • Ferrucci M, Leach R, Giusca C, Carmignato S, Dewulf W (2015) Towards geometrical calibration of X-ray computed tomography systems—a review. Meas Sci Technol 26(August):92003. doi:10.1088/0957-0233/26/9/092003

  • Glover GH (1982) Compton scatter effects in CT reconstructions. Med Phys 9(6):860–867. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7162472. Accessed 23 May 2016

  • Hemachandran K, Chetal AR (1986) X-ray K-absorption study of copper in malachite mineral. Physica Status Solidi (B) 136(1):181–185. Available at: http://doi.wiley.com/10.1002/pssb.2221360120. Accessed 24 Oct 2016

  • Hiller J, Maisl M, Reindl LM (2012) Physical characterization and performance evaluation of an X-ray micro-computed tomography system for dimensional metrology applications. Meas Sci Technol 23(8):85404. Available at: http://stacks.iop.org/0957-0233/23/i=8/a=085404?key=crossref.f16b74da17fdf2dcb54f5caf3bc9722e. Accessed 26 Apr 2016

  • Hunter A, McDavid W (2012) Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofac Radiol 41(3):217–223. Available at: http://www.birpublications.org/doi/abs/10.1259/dmfr/19015946. Accessed 26 Apr 2016

  • IEC (2003) IEC 62220-1 medical electrical equipment—characteristics of digital X-ray imaging devices—Part 1: determination of the detective quantum efficiency, Geneva, Switzerland. Available at: http://www.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2003-10-IEC_62220-DQE.pdf. Accessed 24 May 2016

  • Ihsan A, Heo SH, Cho SO (2007) Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube. Nucl Instrum Methods Phys Res Sect B 264(2):371–377

    Article  Google Scholar 

  • JCGM (2008) JCGM 200 : 2008 international vocabulary of metrology—basic and general concepts and associated terms (VIM) vocabulaire international de métrologie—concepts fondamentaux et généraux et termes associés (VIM). In: International organization for standardization Geneva ISBN, 3(Vim), p 104. Available at: http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf

  • Kasperl S, Bauscher I, Hassler U, Markert H, Schröpfer S (2002) Reducing artifacts in industrial 3D computed tomography (CT). In: Conference: proceedings of the vision, modeling, and visualization conference 2002, Erlangen, Germany, 20–22 Nov, pp 51–57

    Google Scholar 

  • Ketcham RA, Carlson WD (2001) Acquisition, optimiziation and interpretation of X-ray computed tomography imagery: applications to the geosciences. Comput Geosci 27:381–400

    Google Scholar 

  • Konstantinidis A (2011) Evaluation of digital X-ray detectors for medical imaging applications. Ph.D. thesis.University College London

    Google Scholar 

  • Krumm M, Kasperl S, Franz M (2008) Reducing non-linear artifacts of multi-material objects in industrial 3D computed tomography. NDT E Int 41(4):242–251. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0963869507001478. Accessed 26 Apr 2016

  • Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A (2011) Computed tomography for dimensional metrology.  CIRP Annals 60(2):821–842. doi:10.1016/j.cirp.2011.05.006

  • Kumar J, Attridge A, Wood PKC and Williams MA (2011) Analysis of the effect of cone-beam geometry and test object configuration on the measurement accuracy of a computed tomography scanner used for dimensional measurement. Meas Sci Technol 22(3)

    Google Scholar 

  • Kuusk J (2011) Dark signal temperature dependence correction method for miniature spectrometer modules. J Sens 2011:1–9. doi:10.1155/2011/608157

  • Landauer R (1989) Johnson-nyquist noise derived from quantum mechanical transmission. Physica D: Nonlinear Phenom 38(1–3):226–229. Available at: http://linkinghub.elsevier.com/retrieve/pii/0167278989901978. Accessed 26 Apr 2016

  • Lazurik V, Moskvin V, Tabata T (1998) Average depths of electron penetration: use as characteristic depths of exposure. IEEE Trans Nucl Sci 45(3):626–631. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=682461. Accessed 17 July 2016

  • Lifton JJ, Malcolm AA, McBride JW (2015) A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology. J X-ray Sci Technol 23(1):65–82

    Google Scholar 

  • Lifton JJ, Malcolm AA, McBride JW (2016) An experimental study on the influence of scatter and beam hardening in X-ray CT for dimensional metrology. Meas Sci Technol 27(1):15007

    Google Scholar 

  • Matern D, Herold F, Wenzel T (2016) On the influence of ring artifacts on dimensional measurement in industrial computed tomography. In: 6th conference on industrial computed tomography (iCT) 2016, 9–12 Feb 2016

    Google Scholar 

  • Mehranian A, Ay MR, Alam NR, Zaidi H (2010) Quantifying the effect of anode surface roughness on diagnostic X-ray spectra using Monte Carlo simulation. Med Phys 37(2):742

    Google Scholar 

  • Müller P, Hiller J, Cantatore A, Tosello G, De Chiffre L (2012) New reference object for metrological performance testing of industrial CT systems. In: Proceedings of the 12th euspen international conference

    Google Scholar 

  • Müller P, Hiller J, Dai Y, Andreasen JL, Hansen HN, De Chiffre L (2016) Estimation of measurement uncertainties in X-ray computed tomography metrology using the substitution method. CIRP J Manuf Sci Technol 7(3):222–232. Available at: http://linkinghub.elsevier.com/retrieve/pii/S1755581714000157  

  • Prell D, Kyriakou Y, Kalender WA (2009) Comparison of ring artifact correction methods for flat-detector CT. Phys Med Biol 54(12):3881–3895

    Article  Google Scholar 

  • Schuetz P, Jerjen I, Hofmann J, Plamondon M, Flisch A, Sennhauser U (2014) Correction algorithm for environmental scattering in industrial computed tomography.  NDT E Int Volume 64:59–64, ISSN 0963-8695, http://dx.doi.org/10.1016/j.ndteint.2014.03.002

  • Schörner K (2012) Development of methods for scatter artifact correction in industrial X-ray cone-beam computed tomography. Technische Universität München. Available at: http://mediatum.ub.tum.de/doc/1097730/document.pdf. Accessed 24 May 2016

  • Sijbers J and Postnov A (2004) Reduction of ring artefacts in high resolution micro-CT reconstructions. Phys Med Biol 49(14):N247–N253 

    Google Scholar 

  • Stachowiak GW, Batchelor AW (1993) Engineering tribology. Elsevier

    Google Scholar 

  • Stigler SM (1982) Poisson on the poisson distribution. Stat Probab Lett 1(1):33–35. Available at: http://linkinghub.elsevier.com/retrieve/pii/0167715282900104. Accessed 24 May 2016

  • Stolfi A, Thompson MK, Carli L, De Chiffre L (2016). Quantifying the Contribution of Post-Processing in Computed Tomography Measurement Uncertainty. Procedia CIRP 43:297–302. doi:10.1016/j.procir.2016.02.123  

  • Stolfi A, Kallasse M-H, Carli L, De Chiffre L. (2016). Accuracy Enhancement of CT Measurements using Data Filtering. In: Proceedings of the 6th Conference on Industrial Computed Tomography (iCT 2016)   

    Google Scholar 

  • Tan Y (2015) Scanning and post-processing parameter optimization for CT dimensional metrology. Ph.D. thesis, KU Leuven, Science, Heverlee, Belgium

    Google Scholar 

  • Thierry R, Miceli A, Hofmann J (2007) Hybrid simulation of scattering distribution in cone beam CT. In: DIR 2007—International symposium on digital industrial radiology and computed tomography, 25–27 June, Lyon, France

    Google Scholar 

  • Toft P (1996) The radon transform theory and implementation. Ph.D. thesis. Technical University of Denmark

    Google Scholar 

  • Tuy HK (1983) An inversion formula for cone-beam reconstruction. SIAM J Appl Math 43(3):546–552

    Google Scholar 

  • Umbaugh SE, Umbaugh SE (2011) Digital image processing and analysis: human and computer vision applications with CVIP tools. CRC Press

    Google Scholar 

  •  Van de Casteele E, Van Dyck D, Sijbers J, Raman E (2004) The effect of beam hardening on resolution in X-ray microtomography. In: Fitzpatrick JM, Sonka M (eds) roc. SPIE 5370, Medical Imaging 2004: Image Processing, 2089. International society for optics and photonics, pp 2089–2096 

    Google Scholar 

  • Van Gompel G, Van Slambrouck K, Defrise M, Batenburg KJ, Mey J, Sijbers J, Nuyts J (2011) Iterative correction of beam hardening artifacts in CT. Med Phys 38(S1):S36

    Google Scholar 

  • Van Nieuwenhove V, De Beenhouwer J, De Carlo F, Mancini L, Marone F, Sijbers J (2015) Dynamic intensity normalization using eigen flat fields in X-ray imaging. Opt Express 23(21):27975. Available at: https://www.osapublishing.org/abstract.cfm?URI=oe-23-21-27975. Accessed 24 May 2016

  • Verein Deutscher Ingenieure (2008) VDI/VDE 2630 Blatt 1.2: Computertomografie in der dimensionellen Messtechnik. Einflussgrößen auf das Messergebnis und Empfehlungen für dimensionelle Computertomografie-Messungen, pp 1–15

    Google Scholar 

  • Villarraga-Gómez H, Smith ST (2015) CT measurements and their estimated uncertainty: the significance of temperature and bias determination. In: Proceedings of 15th international conference on metrology and properties of engineering surfaces, University of North Carolina—Charlotte, USA, pp 509–515

    Google Scholar 

  • Villarraga-Gómez H, Clark D, Smith S (2016) Effect of the number of radiographs taken in CT for dimensional metrology. In: Proceedings of euspen’s 16th International Conference & Exhibition

    Google Scholar 

  • Weckenmann A, Krämer P (2013) Predetermination of measurement uncertainty in the application of computed tomography. Prod Lifecycle Manag: Geom Var 317–330

    Google Scholar 

  • Weiß D et al (2012) Geometric image distortion in flat-panel X-ray detectors and its influence on the accuracy of CT-based dimensional measurements. In: Conference on industrial computed tomography (iCT), Wels, pp 173–181

    Google Scholar 

  • Welkenhuyzen F (2016) Investigation of the accuracy of an X-ray CT scanner for dimensional metrology with the aid of simulations and calibrated artifacts. Ph.D. thesis, KU Leuven, Science, Heverlee, Belgium

    Google Scholar 

  • Wenig P, Kasperl S (2006) Examination of the Measurement Uncertainty on Dimensional Measurements by X-ray Computed Tomography, Proceedings of 9th European Congress on Non-Destructive Testing (ECNDT 2006)

    Google Scholar 

  • Wiegert J (2007) Scattered radiation in cone beam computed tomography: analysis, quantification and compensation. Publikations server der RWTH Aachen University

    Google Scholar 

  • Xi D et al (2010) The study of reconstruction image quality resulting from geometric error in micro-CT system. In: 2010 4th international conference on bioinformatics and biomedical engineering, pp 8–11

    Google Scholar 

  • Yagüe-Fabra JA, Ontiveros S, Jiménez R, Chitchian S, Tosello G, Carmignato S (2013) A 3D edge detection technique for surface extraction in computed tomography for dimensional metrology applications. CIRP Ann Manuf Technol 62(1):531–534. doi:10.1016/j.cirp.2013.03.016

  • Yousuf MA, Asaduzzaman M (2010) An efficient ring artifact reduction method based on projection data for micro-CT images. J Sci Res 2(1):37–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Stolfi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Stolfi, A., De Chiffre, L., Kasperl, S. (2018). Error Sources. In: Carmignato, S., Dewulf, W., Leach, R. (eds) Industrial X-Ray Computed Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-59573-3_5

Download citation

Publish with us

Policies and ethics