Skip to main content

Sugarcane (S. officinarum x S. spontaneum)

  • Chapter
  • First Online:
Genetic Improvement of Tropical Crops

Abstract

Sugarcane has been cultivated for thousands of years for producing sugar. Sugarcane is a fast-growing grass species that accumulates high amounts of sucrose in its stalks. Sugarcane is a complex polyploid with high levels of autopolyploidy and aneuploidy. Sugarcane belongs to the Saccharum species which include S. officinarum, S. spontaneum, S. robustum, S. barberi and S. sinense, species that have been used in the development of modern cultivars. S. spontaneum is known to possess wide genetic diversity and adaptability and has been used widely in modern introgression breeding. At time of crossing, biparental, melting pot and male-only mating are adopted. Melting pot involves crossing several males to one female, while male only involves intercrossing several plants. Several approaches to increase efficiency of breeding sugarcane have been adopted over the years. The proven cross and proven parents were popular in early days of sugarcane breeding. These have been superseded by family evaluation and estimation of breeding values using family data. Variety development involves testing genotypes across several field trials. However, sugarcane, unlike other crops, only experiences genetic recombination at crossing, and all subsequent stages are propagated from vegetative material. This disadvantage requires careful choice of parents to optimise the genetic recombinations required. The future of sugarcane breeding will focus on increasing genetic gains via family and parent evaluation, introgression to diversity gene pools and incorporating new genetic material as well as use of molecular markers to increase precision of trait breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken KS, Jackson PA, McIntyre CL (2007) Construction of genetic linkage map of Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50:742–756

    Article  CAS  PubMed  Google Scholar 

  • Alexander AG (1985) The energy cane alternative. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2009) Identification of molecular markers associated with sugar related traits in a Saccharum interspecific cross. Euphytica 167:127–142

    Article  CAS  Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2005) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46(1):448–455

    Article  Google Scholar 

  • Arro J, Veremis JC, Kimbeng CA, Botanga C (2006) Genetic diversity and relationships revealed by AFLP markers among Saccharum spontaneum and related species and genera. JASSCT 26:101–115

    Google Scholar 

  • Artschwager E (1925) Anatomy of the vegetative organs of sugar cane. J Agric Res 30:197–221

    Google Scholar 

  • Artschwager E (1930) A comparative study of the stem epidermis of certain sugarcane varieties. J Agric Res 41:853–865

    Google Scholar 

  • Artschwager E (1940) Morphology of the vegetative organs of sugarcane. J Agric Res 60:503–509

    Google Scholar 

  • Artschwager E (1951) The role of the ligule in sugarcane taxonomy. Am J Bot 38:144–146

    Article  Google Scholar 

  • Atkin FC, Dieters MJ, Stringer JK (2009) Impact of depth of pedigree and inclusion of historical data on the estimation of additive variance and breeding values in a sugarcane breeding program. Theor Appl Genet 119:555–565

    Article  PubMed  Google Scholar 

  • Atkinson PR, Nuss KJ (1989) Association between host-plant nitrogen and infestation of the sugarcane borer, Eldana saccharina Walker (Lepidoptera: Pyralidae). Bull Entomol Res 79:489–506

    Article  Google Scholar 

  • Barnes AC (1964) The sugar cane Botany, cultivation and utilization. World Crops Book. Nescience Publishers, New York, p 456pages

    Google Scholar 

  • Berding N, Hogarth DM, Cox M (2004) Plant improvement of sugarcane. In: Glyn J (ed) Sugarcane. Blackwell Science, Oxford, pp 20–53

    Chapter  Google Scholar 

  • Berding N, Roach BT (1987) Germplasm collection, maintenance and use. Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 143–210

    Book  Google Scholar 

  • Brandes E (1958) Origin, clasification and characteristics. In: Artschwager E, Brandes EW (eds) Sugarcane (Saccharum officinarum L), vol 1-35. USDA handbook, Washington, pp 260–262

    Google Scholar 

  • Burnquist WL (2013) Sugarcane research and development: a view from the private sector. Proc Int Soc Sugar Cane Technol 28:1–7

    Google Scholar 

  • Chang YS, Milligan SB (1992) Estimating the potential of sugarcane families to produce elite genotypes using univariate cross prediction methods. Theor Appl Genet 84:662–671

    CAS  PubMed  Google Scholar 

  • Clements HF (1975) Flowering of sugarcane: mechanics and control, Hawaii Agricultural Experiment Station Technical Bulletin No 92. University of Hawaii, Honolulu

    Google Scholar 

  • Costet L, Raboin LM, Payet M, D’Hont A, Nibouche S (2012) A major quantitative trait allele for resistance to the sugarcane yellow leaf virus (Luteoviridae). Plant Breed 131:637–640

    Article  CAS  Google Scholar 

  • Daniels J, Roach BT (1987) A review of the origin and improvement of sugarcane. Copersucare International Sugarcane Breeding Workshop, Brazil, pp 1–32

    Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with an RFLP marker in sugarcane cultivarR570. Theor Appl Genet 92:1059–1064

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A (2005) Un-ravelling the genome structure of polyploids using FISH and GISH: examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  Google Scholar 

  • D’Hont A, Rao P, Feldmann P, Grivet L, Islam-Farridi N, Taylor P, Glaszmann JC (1995) Identification and characterisation of intergeneric hybrids, S. officinarum × Erianthus arundinaceus with molecular markers and in situ hybridization. Theoretical and Applied Genetics 91:320–326

    PubMed  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars Saccharum spp by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  Google Scholar 

  • Donovan PA (1996) An empirical evaluation of the sugarcane variety NCo310. Proc South Afr Sugarcane Technol Assoc 70:93–102

    Google Scholar 

  • Edme SJ, Miller JD, Glaz B, Tai PYP, Comstock JC (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci 45:92–97

    Article  Google Scholar 

  • FAOSTAT (2014) Crop production data, food and agriculture organization of the United Nations, available online at http://faostat.fao.org/site/567/default.aspx#ancor. Accessed 19 Oct 2016

  • Gopinathan MC (2010) Research and technology transfer strategies for the next decade an Indian example. Proc Int Soc Sugar Cane Technol 27:1–15

    Google Scholar 

  • Gravois KA, Milligan SB, Martin FA (1991) Indirect selection for increased sucrose yield in early sugarcane testing stages. Field Crop Res 26:67–73

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grivet L, Glaszmann JC, D’Hont A (2006) Molecular evidences for sugarcane evolution and domestication. In: Motely T, Zerega N, Cross H (eds) Darwin’s harvest. New approaches to the origins, evolution and conservation of crops. Columbia University Press, New York, pp 49–66

    Google Scholar 

  • Hale A, Hoy J, Veremis J (2014) Identification of freeze tolerant Saccharum spontaneum accessions through pot-based study in sugarcane germplasm enhancement for adaptation to temperate climates. Biomass Bioenergy 61:53–57

    Article  Google Scholar 

  • Hale AL, Viator RP, Veremis J (2010) Identification of sources of resistance to sugarcane red rot. Proc Int Soc Sugar cane Technol 27:1–8

    Google Scholar 

  • Hatch MD (2002) C4 photosynthesis: discovery and resolution. Photosynth Res 73:251–256

    Article  CAS  PubMed  Google Scholar 

  • Heinz DJ, Tew TL (1987) Hybridization procedures. In: Heinz DJ (ed) Developments in crop science 11: sugarcane improvement through breeding. Elsevier, New York, pp 313–342

    Chapter  Google Scholar 

  • Jackson R, Dunkelman P (1974) Relative resistance of Saccharum spontaneum clones to the sugarcane borer. Proc ISSCT 14:513–515

    Google Scholar 

  • Jackson P, Hale A, Bennett G, Lakshmanan P (2014) Sugarcane. Alien Gene transfer in crop plants, vol 2. Springer, New York, pp 317–345

    Book  Google Scholar 

  • Jackson PA, Henry R (2011) Erianthus. Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, pp 97–107

    Book  Google Scholar 

  • Jackson PA, McRae TA (1998) Gains from selection of broadly adapted and specifically adapted sugarcane families. Field Crop Res 59(3):151–162

    Article  Google Scholar 

  • Kimbeng CA, Cox MC (2003) Early generation selection of sugarcane families and clones in Australia. A review. J Am Soc Sugar Cane Technol 23:23–29

    Google Scholar 

  • Koike H (1980) Evidence of resistance in Saccharum spontaneum and Saccharum related genera to sugarcane mosaic virus strains H and I. Proc ISSCT 17:1523–1527

    Google Scholar 

  • Leal MV, Walter A, Seabra JA (2013) Sugarcane as an energy source. Biomass Convers Biorefinery 3:17–26

    Article  CAS  Google Scholar 

  • Lingle SE, Johnson RM, Tew TL, Viator RP (2010) Changes in juice quality and sugarcane yield with recurrent selection for sucrose. Field Crop Res 118:152–157

    Article  Google Scholar 

  • McCord PH, Migneault AJ (2016) Genotyping sugarcane for the Brown rust resistance locus Bru1 using unlabeled probe melting. SugarTech 18:401–406

    CAS  Google Scholar 

  • Miller JD, James NI (1974) The influence of stalk density on cane yield. Proc ISSCT 15:177–184

    Google Scholar 

  • Ming R, Moore P, Wu K (2006) Sugarcane improvement through breeding and biotechnology. Plant Breed Rev 27:15–118

    CAS  Google Scholar 

  • Moore PH (1971) Investigation on the flowering of Saccharum I. Ontogeny of the inflorescence. Can J Bot 49:677–682

    Article  Google Scholar 

  • Mukherjee SK (1957) Origin and distribution of Saccharum. Bot Gaz 199:55–61

    Article  Google Scholar 

  • Mukunthan N, Nirmala R (2002) Tolerance to white grub, Holotrichia serrata in Saccharum and Erianthus spp. Sugar Cane Int 22:26–28

    Google Scholar 

  • Nelson T (2011) The grass leaf developmental gradient as a platform for a system understanding of the anatomical specialisation of C4 leaves. J Exp Bot 62:3039–3048

    Article  CAS  PubMed  Google Scholar 

  • Nuss KJ (2001) The contribution of variety NCo376 to sugar production in South Africa from 1955 to 2000 and its value as a parent in the breeding programme. Proc South Afr Sugarcane Technol Assoc 75:154–158

    Google Scholar 

  • Pan YB (2010) Databasing molecular identities of sugarcane (Saccharum spp) clones constructed with microsatellite (SSR) DNA markers. AJPS 1:87

    Article  CAS  Google Scholar 

  • Pedrozo CA, Barbosa MHP, da Silva FL, de Resende MDV, Peternelli LA (2011) Repeatability of full-sib sugarcane families across harvests and the efficiency of early selection. Euphytica 182:423–430

    Article  CAS  Google Scholar 

  • Piperidis G, D’Hont A (2001) Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridization GISH. Proc Int Soc Sugar Cane Technol 24:565–566-47

    Google Scholar 

  • Price S (1963) Cytogenetics of modern sugarcane. Econ Bot 17:97–105

    Article  Google Scholar 

  • Rutherford RS (2015) IPM for Eldana control: an Integrated Pest Management (IPM) approach for the control of the stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae). ISBN 1-874903-41-7. South African Sugarcane Research Institute, Durban, South Africa

    Google Scholar 

  • Skinner JC (1982) Efficiency of bunch-planted and single-planted seedlings for selecting superior families in sugarcane. Euphytica 31(2):523–537

    Article  Google Scholar 

  • Skinner JC, Hogarth DM, Wu KK (1987) Selection methods, criteria and indices. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 409–453

    Chapter  Google Scholar 

  • Sreenivasan TV, Ahloowalia BS, Heinz DJ (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 211–251

    Chapter  Google Scholar 

  • Stevenson GC (1965) Genetics and the breeding of sugarcane. Longman, London, p 284

    Google Scholar 

  • Sukarso G (1986) Assessment of family selection in original seedlings of sugarcane at Pasuruan. Proc Int Soc Sugar Cane Technol 19:440–446

    Google Scholar 

  • Van Dillewijn C (1952) Botany of sugarcane. HH Veenaman and Zonen, Wageningen, p 371

    Google Scholar 

  • Walker DIT (1963) Family performance at early selection stages as a guide to the breeding programme. Proceedings of the International Society of Sugarcane Technologists 11, pp 469–482

    Google Scholar 

  • Wang LP, Jackson PA, Li FS (2008) Evaluation of sugarcane x progeny for biomass composition and yield components. Crop Sci 48:951–961

    Article  Google Scholar 

  • White W, Miller J, Milligan S, Burner D, Legendre B (2001) Inheritance of sugarcane borer resistance in sugarcane derived from two measures of insect damage. Crop Sci 41:1706–1710

    Article  Google Scholar 

  • Zhou MM (2004) Performance of varieties N14 and NCo376 in the South East Lowveld of Zimbabwe. Proc South Afr Sugarcane Technol Assoc 78:153–160

    Google Scholar 

  • Zhou MM (2013) Using logistic regression model for selection in non-replicated sugarcane breeding populations. Euphytica 191:415–428

    Article  Google Scholar 

  • Zhou MM (2014) Family evaluation for sugarcane yield, using data estimated from stalk number, height and diameter. J Crop Improv 28(3):406–417

    Article  Google Scholar 

  • Zhou MM, Gwata ECT (2016) Quantifying sugarcane cultivar genetic gains in the midlands region of South Africa. Agron J 108:342–348

    Article  CAS  Google Scholar 

  • Zhou MM, Shoko MD (2012a) Simultaneous selection for yield and ratooning ability in sugarcane genotypes using analysis of covariance. South Afr J Plant Soil 29(2):93–100

    Article  Google Scholar 

  • Zhou MM, Shoko MD (2012b) Simultaneous selection for yield and stability in sugarcane using parametric statistics. J Agric Sci Technol 2(4):400–410

    Google Scholar 

  • Zhou MM, Suman A, Kimbeng CA (2012) Molecular markers associated with starch content and implications for sugarcane introgression breeding using Saccharum spontaneum. J Agric Sci Technol 2(11):1127–1137

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvellous Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, M. (2017). Sugarcane (S. officinarum x S. spontaneum). In: Genetic Improvement of Tropical Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-59819-2_9

Download citation

Publish with us

Policies and ethics