Skip to main content

Quantum Information Set Decoding Algorithms

  • Conference paper
  • First Online:
Post-Quantum Cryptography (PQCrypto 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10346))

Included in the following conference series:

Abstract

The security of code-based cryptosystems such as the McEliece cryptosystem relies primarily on the difficulty of decoding random linear codes. The best decoding algorithms are all improvements of an old algorithm due to Prange: they are known under the name of information set decoding techniques. It is also important to assess the security of such cryptosystems against a quantum computer. This research thread started in [23] and the best algorithm to date has been Bernstein’s quantising [5] of the simplest information set decoding algorithm, namely Prange’s algorithm. It consists in applying Grover’s quantum search to obtain a quadratic speed-up of Prange’s algorithm. In this paper, we quantise other information set decoding algorithms by using quantum walk techniques which were devised for the subset-sum problem in [6]. This results in improving the worst-case complexity of \(2^{0.06035n}\) of Bernstein’s algorithm to \(2^{0.05869n}\) with the best algorithm presented here (where n is the codelength).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An information set of a linear code C of dimension k is a set \({\mathscr {I}}\) of k positions such that when given \(\{c_i:i \in {\mathscr {I}}\}\) the codeword c of C is specified entirely.

  2. 2.

    In the case of Dumer’s algorithm, for instance, even if the restriction of e to \({\fancyscript{S}}\) is of weight p, Dumer’s algorithm may fail to find it since it does not split evenly on both sides of the bipartition of \({\fancyscript{S}}\).

References

  1. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barg, A.: Complexity issues in coding theory. In: Electronic Colloquium on Computational Complexity, October 1997

    Google Scholar 

  3. Becker, A.: The representation technique, applications to hard problems in cryptography. Ph.D. thesis, Université Versailles Saint-Quentin en Yvelines, October 2012

    Google Scholar 

  4. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in 2n/20: how \(1+1=0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_31

    Chapter  Google Scholar 

  5. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12929-2_6

    Chapter  Google Scholar 

  6. Bernstein, D.J., Jeffery, S., Lange, T., Meurer, A.: Quantum algorithms for the subset-sum problem. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 16–33. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9_2

    Chapter  Google Scholar 

  7. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9_42

    Chapter  Google Scholar 

  8. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortsch. Phys. 46, 493 (1998)

    Article  Google Scholar 

  9. Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). doi:10.1007/978-3-319-29360-8_10

    Chapter  Google Scholar 

  10. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Application. Academic Press, New York (1980)

    MATH  Google Scholar 

  11. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of 5th Joint Soviet-Swedish International Workshop Information Theory, Moscow, pp. 50–52 (1991)

    Google Scholar 

  12. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7_6

    Chapter  Google Scholar 

  13. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219. ACM Press, New York (1996)

    Google Scholar 

  14. Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709–4712 (1997)

    Article  Google Scholar 

  15. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_12

    Chapter  Google Scholar 

  16. Kachigar, G. Étude et conception d’algorithmes quantiques pour le décodage de codes linéaires. Master’s thesis, Université de Rennes 1, France, September 2016

    Google Scholar 

  17. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. preprint, arXiv:1703.00263 [cs.CR], February 2017

  18. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC 2007, pp. 575–584 (2007)

    Google Scholar 

  19. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_6

    Chapter  Google Scholar 

  20. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_9

    Google Scholar 

  21. McEliece, R.J.: A public-key system based on algebraic coding theory, pp. 114–116. Jet Propulsion Laboratory (1978). DSN Progress Report 44

    Google Scholar 

  22. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory 15(2), 159–166 (1986)

    MATH  Google Scholar 

  23. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 95–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  25. Santha, M.: Quantum walk based search algorithms. In: 5th TAMC, pp. 31–46. arXiv:0808.0059 (2008)

  26. Schroeppel, R., Shamir, A.: A \(T=O(2^{n/2})\), \(S=O(2^{n/4})\) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). doi:10.1007/BFb0019850

    Chapter  Google Scholar 

  29. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Tillich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kachigar, G., Tillich, JP. (2017). Quantum Information Set Decoding Algorithms. In: Lange, T., Takagi, T. (eds) Post-Quantum Cryptography . PQCrypto 2017. Lecture Notes in Computer Science(), vol 10346. Springer, Cham. https://doi.org/10.1007/978-3-319-59879-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59879-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59878-9

  • Online ISBN: 978-3-319-59879-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics