Skip to main content

Evolutionary Computation

  • Chapter
  • First Online:
Evolutionary Computation and Complex Networks

Abstract

Evolutionary algorithms (EAs) are optimization heuristics designed to solve optimization problems. This chapter introduces classical EAs and other advanced methods including differential evolution, memetic algorithms, particle swarm optimization, and multi-objective EAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will not differentiate between objective and fitness functions in parameter optimization problems in this book.

References

  1. Abbass, H.: The self-adaptive pareto differential evolution algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2002), vol. 1, pp. 831–836. IEEE Press, Piscataway, NJ (2002)

    Google Scholar 

  2. Abbass, H., Sarker, R., Newton, C.: PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC2001), vol. 2, pp. 971–978. IEEE Press, Piscataway, NJ (2001)

    Google Scholar 

  3. Abbass, H.A.: Mbo: marriage in honey bees optimization-a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 207–214. IEEE (2001)

    Google Scholar 

  4. Abbass, H.A.: An agent based approach to 3-SAT using marriage in honey-bees optimization. Int. J. Know. Based Intell. Eng. Syst. 6(2), 64–71 (2002)

    Google Scholar 

  5. Abbass, H.A.: An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif. Intell. Med. 25(3), 265–281 (2002)

    Article  Google Scholar 

  6. Abbass, H.A., Sarker, R.: The pareto differential evolution algorithm. Int. J. Artif. Intell. Tools 11(04), 531–552 (2002)

    Article  Google Scholar 

  7. Abbass, H.A., Sarker, R., Newton, C.: PDE: a pareto frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 971–978. IEEE Service Center, Seoul Korea (2001)

    Google Scholar 

  8. Bagley, J.D.: The behavior of adaptive system which employ genetic and correlation algorithm. Ph.D. thesis, University of Michigan (1967)

    Google Scholar 

  9. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multi-objective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  10. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for online and offline control design of PMSM drives. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(1), 28–41 (2007)

    Article  Google Scholar 

  11. Cavicchio, D.J.: Adaptive search using simulated evolution. Ph.D. thesis, University of Michigan (1970)

    Google Scholar 

  12. Chen, M., Ludwig, S.A.: Discrete particle swarm optimization with local search strategy for rule classification. In: 2012 Fourth World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 162–167. IEEE (2012)

    Google Scholar 

  13. Chuang, L.Y., Tsai, S.W., Yang, C.H.: Chaotic catfish particle swarm optimization for solving global numerical optimization problems. Appl. Math. Comput. 217(16), 6900–6916 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Coello, C.A.C., Pulido, G.T., et al.: A micro-genetic algorithm for multi-objective optimization. In: EMO, vol. 1, pp. 126–140. Springer (2001)

    Google Scholar 

  15. Coello Coello, C.A.: Mopso: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002), vol. 2, pp. 1051–1056 (2002)

    Google Scholar 

  16. Corne, D.W., Knowles, J.D., Oates, M.J.: The pareto envelope-based selection algorithm for multi-objective optimization. In: International Conference on Parallel Problem Solving from Nature, pp. 839–848. Springer (2000)

    Google Scholar 

  17. Daneshyari, M., Yen, G.G.: Constrained multiple-swarm particle swarm optimization within a cultural framework. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 42(2), 475–490 (2012)

    Article  Google Scholar 

  18. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)

    Article  Google Scholar 

  19. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  21. DeJong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis (1975)

    Google Scholar 

  22. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)

    Google Scholar 

  23. Fan, H.Y., Lampinen, J.: A trigonometric mutation operation to differential evolution. J. Glob. Optim. 27(1), 105–129 (2003)

    Article  MathSciNet  Google Scholar 

  24. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution (1966)

    Google Scholar 

  25. Fonseca, C.M., Fleming, P.J., et al.: Genetic algorithms for multi-objective optimization: formulation discussion and generalization. In: Icga, vol. 93, pp. 416–423 (1993)

    Google Scholar 

  26. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning (1989)

    Google Scholar 

  27. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  28. Goldberg, D.E., Richardson, J., et al.: Genetic algorithms with sharing for multimodal function optimization. In: Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41–49. Lawrence Erlbaum, Hillsdale, NJ (1987)

    Google Scholar 

  29. Gravel, M., Price, W.L., Gagné, C.: Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. Eur. J. Oper. Res. 143(1), 218–229 (2002)

    Article  Google Scholar 

  30. Gwee, B.H., Lim, M.H.: A GA with heuristic-based decoder for ic floorplanning. Integr. VLSI J. 28(2), 157–172 (1999)

    Article  Google Scholar 

  31. Hansen, M.P.: Tabu search for multi-objective optimization: MOTS. In: Proceedings of the 13th International Conference on Multiple Criteria Decision Making, pp. 574–586 (1997)

    Google Scholar 

  32. Harp, S.: Towards the genetic synthesis of neural networks. In: ICGA, pp. 360–369 (1989)

    Google Scholar 

  33. Hasan, S.K., Sarker, R., Essam, D., Cornforth, D.: Memetic algorithms for solving job-shop scheduling problems. Memet. Comput. 1(1), 69–83 (2009)

    Article  Google Scholar 

  34. Holland, J.H.: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Application to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  35. Hollstien, R.B.: Artificial genetic adaptation in computer control systems. Ph.D. thesis, University of Michigan (1971)

    Google Scholar 

  36. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched pareto genetic algorithm for multi-objective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence, pp. 82–87. Ieee (1994)

    Google Scholar 

  37. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Australasian Joint Conference on Artificial Intelligence, pp. 861–872. Springer (2004)

    Google Scholar 

  38. Jeong, S., Hasegawa, S., Shimoyama, K., Obayashi, S.: Development and investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design optimization. IEEE Comput. Intell. Mag. 4(3) (2009)

    Article  Google Scholar 

  39. Kan, W., Jihong, S.: The convergence basis of particle swarm optimization. In: 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE), pp. 63–66. IEEE (2012)

    Google Scholar 

  40. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS 2003, pp. 80–87. IEEE (2003)

    Google Scholar 

  41. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  42. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  43. Knowles, J.D., Corne, D.W.: M-paes: a memetic algorithm for multi-objective optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 325–332. IEEE (2000)

    Google Scholar 

  44. Krishnanand, K., Ghose, D.: Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. In: Proceedings 2005 IEEE Swarm Intelligence Symposium. SIS 2005, pp. 84–91. IEEE (2005)

    Google Scholar 

  45. Kumar, S., Chaturvedi, D.: Tuning of particle swarm optimization parameter using fuzzy logic. In: 2011 International Conference on Communication Systems and Network Technologies (CSNT), pp. 174–179. IEEE (2011)

    Google Scholar 

  46. Lim, D., Ong, Y.S., Lim, M.H., Jin, Y.: Single/multi-objective inverse robust evolutionary design methodology in the presence of uncertainty, pp. 437–456 (2007)

    Google Scholar 

  47. Lim, K.K., Ong, Y.S., Lim, M.H., Chen, X., Agarwal, A.: Hybrid ant colony algorithms for path planning in sparse graphs. Soft Comput. 12(10), 981–994 (2008)

    Article  Google Scholar 

  48. Lim, M., Xu, Y.: Application of hybrid genetic algorithm in supply chain management. Int. J. Comput. Syst. Signals. Special issue on Multi-objective Evolution: Theory and Applications 6(1) (2005)

    Google Scholar 

  49. Lim, M.H., Gustafson, S., Krasnogor, N., Ong, Y.S.: Editorial to the first issue. Memet. Comput. 1, 1–2 (2009)

    Article  Google Scholar 

  50. Loughlin, D.H., Ranjithan, S.R.: The neighborhood constraint method: a genetic algorithm-based multi-objective optimization technique. In: ICGA, pp. 666–673 (1997)

    Google Scholar 

  51. McMullen, P.R.: An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives. Artif. Intell. Eng. 15(3), 309–317 (2001)

    Article  Google Scholar 

  52. Moscato, P., et al.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Caltech concurrent computation program, C3P Report, vol. 826 (1989)

    Google Scholar 

  53. Mostaghim, S., Teich, J.: Strategies for finding good local guides in multi-objective particle swarm optimization (mopso). In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS 2003, pp. 26–33. IEEE (2003)

    Google Scholar 

  54. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm I. Continuous parameter optimization. Evol. Comput. 1(1), 25–49 (1993)

    Article  Google Scholar 

  55. Müller, S., Airaghi, S., Marchetto, J., Koumoutsakos, P.: Optimization algorithms based on a model of bacterial chemotaxis. In: Proceedings of 6th International Conference on Simulation of Adaptive Behavior: From Animals to Animats, SAB 2000 Proc. Suppl. Citeseer (2000) Proceedings supplement Citeseer

    Google Scholar 

  56. Ong, Y., Keane, A.: A domain knowledge based search advisor for design problem solving environments. Eng. Appl. Artif. Intell. 15(1), 105–116 (2002)

    Article  Google Scholar 

  57. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algorithms: a comparative study. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 36(1), 141–152 (2006)

    Google Scholar 

  58. Ong, Y.S., Nair, P.B., Keane, A.J.: Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J. 41(4), 687–696 (2003)

    Article  Google Scholar 

  59. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Trans. Evol. Comput. 10(4), 392–404 (2006)

    Article  Google Scholar 

  60. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  61. Poloni, C.: Hybrid GA for multi-objective aerodynamic shape optimization. pp. 397–415. Wiley, New York (1995)

    Google Scholar 

  62. Price, K.V.: Differential evolution versus the functions of the 2/sup nd/ICEO. In: IEEE International Conference on Evolutionary Computation, pp. 153–157. IEEE (1997)

    Google Scholar 

  63. Price, K.V.: An introduction to differential evolution. New ideas in optimization, pp. 79–108 (1999)

    Google Scholar 

  64. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution A Practical Approach to Global Optimization. Springer (2005)

    Google Scholar 

  65. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

    Article  Google Scholar 

  66. Qiu, C., Wang, C., Zuo, X.: A novel multi-objective particle swarm optimization with k-means based global best selection strategy. Int. J. Comput. Intell. Syst. 6(5), 822–835 (2013)

    Article  Google Scholar 

  67. Dawkins, R.: The Selfish Gene. Oxford University Press (1976)

    Google Scholar 

  68. Robič, T., Filipič, B.: Differential evolution for multi-objective optimization. In: Evolutionary Multi-Criterion Optimization, pp. 520–533. Springer (2005)

    Google Scholar 

  69. Rosenberg, R.S.: Simulation of genetic populations with biochemical properties. Ph.D. thesis, University of Michigan, Ann Arbor (1967)

    Google Scholar 

  70. Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 5(1), 96–101 (1994)

    Article  Google Scholar 

  71. Sasaki, D., Morikawa, M., Obayashi, S., Nakahashi, K.: Aerodynamic shape optimization of supersonic wings by adaptive range multi-objective genetic algorithms. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 639–652. Springer (2001)

    Google Scholar 

  72. Schaffer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. thesis, Vanderbilt University, Nashville, TN (USA) (1984)

    Google Scholar 

  73. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization 1, 101–106 (2001)

    Google Scholar 

  74. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  75. Stender, J.: Parallel Genetic Algorithms: Theory and Applications, vol. 14. IOS press (1993)

    Google Scholar 

  76. Storn, R.: Differential Evolution Research—Trends and Open Questions. Springer (2008)

    Google Scholar 

  77. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Berkeley Int. Comput. Sci. Inst. 3 (1995)

    Google Scholar 

  78. Storn, R., Price, K.: Minimizing the real functions of the ICEC 1996 contest by differential evolution. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 842–844. IEEE (1996)

    Google Scholar 

  79. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  80. Sutton, A.M., Lunacek, M., Whitley, L.D.: Differential evolution and non-separability: using selective pressure to focus search. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1428–1435. ACM (2007)

    Google Scholar 

  81. Tang, J., Lim, M.H., Ong, Y.S.: Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems. Soft Comput. A Fus. Found. Methodol. Appl. 11(9), 873–888 (2007)

    Google Scholar 

  82. Van Veldhuizen, D.A., Lamont, G.B.: Multi-objective evolutionary algorithms: analyzing the state-of-the-art. Evol. Comput. 8(2), 125–147 (2000)

    Article  Google Scholar 

  83. Voigt, H.M.: Soft Genetic Operators in Evolutionary Algorithms, pp. 123–141 (1995)

    Google Scholar 

  84. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  85. Yang, S., Wang, M., et al.: A quantum particle swarm optimization 1, 320–324 (2004)

    Google Scholar 

  86. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74 (2010)

    Chapter  Google Scholar 

  87. Zhang, Q., Li, H.: Moea/d: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  88. Zhang, W., Jin, Y., Li, X., Zhang, X.: A simple way for parameter selection of standard particle swarm optimization. Artif. Intell. Comput. Intell. 436–443 (2011)

    Google Scholar 

  89. Zhang, Y., Balochian, S., Agarwal, P., Bhatnagar, V., Housheya, O.J.: Artificial intelligence and its applications. Math. Probl. Eng. (2014)

    Google Scholar 

  90. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimization algorithm and its applications. Math. Probl. Eng. (2015)

    Google Scholar 

  91. Zhu, Z., Ong, Y.S., Zurada, J.M.: Identification of full and partial class relevant genes. IEEE/ACM Trans. Comput. Biol. Bioinf. 7(2), 263–277 (2010)

    Article  Google Scholar 

  92. Zitzler, E., Laumanns, M., Thiele, L.: Spea 2: improving the strength pareto evolutionary algorithm for multi-objective optimization. In: Giannakoglou, K., Tsahalis, D., Périaux, J., Papailiou, K., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100. CIMNE, Athens (2001)

    Google Scholar 

  93. Zitzler, E., Thiele, L.: Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Abbass, H.A., Tan, K.C. (2019). Evolutionary Computation. In: Evolutionary Computation and Complex Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-60000-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60000-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59998-4

  • Online ISBN: 978-3-319-60000-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics