Skip to main content

Modeling of Random Dense CSMA Networks

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10251))

  • 3449 Accesses

Abstract

In Carrier Sense Multiple Access (CSMA) media access control (MAC), two nodes that are within the range of one another can not simultaneously transmit packets. Modeling the concurrently transmitting nodes is the key to analyzing the performance of a CSMA network. In this paper, we study the density of concurrently transmitting nodes and propose a Modification of Modified Hard Core Point (MMHCP) model to accurately estimate the density of concurrently transmitting nodes. Our MMHCP best the popular Matérn CSMA model and the Modified Hard Core Point (MHCP) model by avoiding the underestimation and overestimation issues, respectively. We conduct extensive numerical analysis and simulations to evaluate the accuracy of estimation of our MMHCP. Furthermore, we study the impact of the density of initial Poisson Point Process (PPP) on the mean of aggregate interference. The simulation results demonstrate that our model is more accurate than MHCP and Matérn CSMA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfan, G., Garetto, M., Leonardi, E.: New directions into the stochastic geometry analysis of dense CSMA networks. IEEE Trans. Mob. Comput. 13(2), 324–336 (2014)

    Article  Google Scholar 

  2. Busson, A., Chelius, G.: Point processes for interference modeling in CSMA/CA ad-hoc networks. In: Sixth ACM Symposium Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks, pp. 33–40 (2009)

    Google Scholar 

  3. Nguyen, H.Q., Baccelli, F., Kofman, D.: A stochastic geometry analysis of dense IEEE 802.11 networks. In: 26th IEEE International Conference on Computer Communications, pp. 1199–1207 (2007)

    Google Scholar 

  4. Boorstyn, R., Kershenbaum, A., Maglaris, B., Sahin, V.: Throughput analysis in multihop CSMA packet radio networks. IEEE Trans. Comm. 35(3), 267–274 (1987)

    Article  Google Scholar 

  5. Andrews, J.G., Baccelli, F., Ganti, R.K.: A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)

    Article  Google Scholar 

  6. Dhillon, H., Ganti, R., Baccelli, F., Andrews, J.: Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30(3), 550–560 (2012)

    Article  Google Scholar 

  7. Weber, S., Andrews, J.G., Jindal, N.: An overview of the transmission capacity of wireless networks. IEEE Trans. commun. 58(12), 3593–3604 (2010)

    Article  Google Scholar 

  8. Venkataraman, J., Haenggi, M., Collins, O.: Shot noise models for the dual problems of cooperative coverage and outage in random networks. In: 44th Annual Allerton Conference on Communication Control, and Computing, Monticello, IL, USA, pp. 2642–2650 (2006)

    Google Scholar 

  9. Suryaprakash, V., Møller, J., Fettweis, G.: On the modeling and analysis of heterogeneous radio access networks using a poisson cluster process. IEEE Trans. Wirel. Commun. 14(2), 1035–1047 (2015)

    Article  Google Scholar 

  10. Deng, N., Zhou, W., Haenggi, M.: The ginibre point process as a model for wireless networks with repulsion. IEEE Trans. Wireless Commun. 14(1), 107–121 (2014)

    Article  Google Scholar 

  11. Baccelli, F., Blaszczyszyn, M.B., Muhlethaler, P.: An aloha protocol for multihop mobile wireless networks. IEEE Trans. Inf. Theory 52(2), 421–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haenggi, M.: Mean interference in hard-core wireless networks. IEEE Commun. Lett. 15, 792–794 (2011)

    Article  Google Scholar 

  13. ElSawy, H., Hossain, E., Camorlinga, S.: Characterizing random CSMA wireless networks: a stochastic geometry approach. In: IEEE ICC, pp. 5000–5004 (2012)

    Google Scholar 

  14. Baccelli, F., Blaszczyszyn, B.: Stochastic Geometry and Wireless Networks. NOW publishers, Breda (2009)

    MATH  Google Scholar 

  15. Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by NSF of China under Grant 61373027 and 61672321 and Shandong Province Higher Educational Science and Technology Program (J15LN06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sun, Y., Song, T., Jiang, H., Zheng, J. (2017). Modeling of Random Dense CSMA Networks. In: Ma, L., Khreishah, A., Zhang, Y., Yan, M. (eds) Wireless Algorithms, Systems, and Applications. WASA 2017. Lecture Notes in Computer Science(), vol 10251. Springer, Cham. https://doi.org/10.1007/978-3-319-60033-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60033-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60032-1

  • Online ISBN: 978-3-319-60033-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics