Skip to main content

Forms of Choice

  • Chapter
  • First Online:
Combinatorial Set Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2845 Accesses

Abstract

In 1904, Zermelo published his first proof that every set can be well-ordered. The proof is based on the so-called Axiom of Choice, denoted AC, which, in Zermelo’s words, states that the product of an infinite totality of sets, each containing at least one element, itself differs from zero (i.e., the empty set). The full theory ZF + AC, denoted ZFC, is called Set Theory.

The Axiom of Choice—which completes the axiom system of Set Theory and which is in our counting the ninth axiom of ZFC—states as follows:

9. The Axiom of Choice

$$\displaystyle{\forall \mathscr{F}\Big(\emptyset \notin \mathscr{F} \rightarrow \exists \ f\Big(\,f \in ^{\mathrm{\mathscr{F}}}\bigcup \mathscr{F} \wedge \forall x \in \mathscr{ F}\big(\,f(x) \in x\big)\Big)\Big).}$$

Informally, every family of non-empty sets has a choice function, or equivalently, every Cartesian product of non-empty sets is non-empty.

In this chapter, the Axiom of Choice—as well as some weaker forms of it—will be discussed in great detail.

I will say, however, that there are many species of counterpoint and that when the same notes and intervals of the principal are sung in the inversion, there will result a striking change in the harmony. Though there are many ways of writing such counterpoints, as I have said, I shall demonstrate only those that seem most elegant. This will avoid boring the reader, who can readily infer the other procedures for himself.

Gioseffo Zarlino

Le Istitutioni Harmoniche, 1558

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Heinz Bachmann, Transfinite Zahlen, Springer-Verlag, Berlin ⋅ Heidelberg, 1967.

    Google Scholar 

  2. John L. Bell and Alan B. Slomson, Models and Ultraproducts: An Introduction, North-Holland, Amsterdam, 1969.

    Google Scholar 

  3. Paul Bernays, A system of axiomatic set theory. III: Infinity and enumerability. Analysis., The Journal of Symbolic Logic, vol. 7 (1942), 65–89.

    Google Scholar 

  4. ——, Axiomatic Set Theory. With a historical introduction by Abraham A. Fraenkel, 2nd ed., [Studies in Logic and the Foundations of Mathematics], North-Holland, Amsterdam, 1968 [reprint: Dover Publications, New York, 1991].

    Google Scholar 

  5. Andreas Blass, Ramsey’s theorem in the hierarchy of choice principles, The Journal of Symbolic Logic, vol. 42 (1977), 387–390.

    Google Scholar 

  6. ——, Existence of bases implies the axiom of choice,  in Axiomatic Set Theory (James E. Baumgartner, Donald A. Martin, and Saharon Shelah, eds.), Contemporary Mathematics, vol. 31, American Mathematical Society, Providence, RI, 1984, pp. 31–33.

    Google Scholar 

  7. George Boole, The calculus of logic, The Cambridge and Dublin Mathematical Journal, vol. 3 (1848), 183–198.

    Google Scholar 

  8. ——, An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities, Walton and Maberley, London, 1854 [reprint: Prometheus Books, New York, 2003].

    Google Scholar 

  9. Nicolas Bourbaki, Éléments de mathématique. Première partie: Les structures fondamentales de l’analyse. Livre I. Théorie des ensembles (Fascicule de résultats), Hermann & Cie., Paris, 1939.

    Google Scholar 

  10. Paul J. Campbell, The origin of “Zorn’s lemma”, Historia Mathematica, vol. 5 (1978), 77–89.

    Google Scholar 

  11. Georg Cantor, Beiträge zur Begründung der transfiniten Mengenlehre. I./[2]II., Mathematische Annalen, vol. 46/49 (1895/1897), 481–512/207–246 (see [12] for a translation into English).

    Google Scholar 

  12. ——, Contributions to the Founding of the Theory of Transfinite Numbers, (translation into English of [11]), [translated, and provided with an introduction and notes, by Philip E. B. Jourdain], Open Court Publishing Company, Chicago and London, 1915 [reprint: Dover Publications, New York, 1952].

    Google Scholar 

  13. ——, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Mit Erläuternden Anmerkungen sowie mit Ergänzungen aus dem Briefwechsel Cantor-Dedekind, edited by E. Zermelo, Julius Springer, Berlin, 1932.

    Google Scholar 

  14. Robert H. Cowen, Two hypergraph theorems equivalent to BPI, Notre Dame Journal of Formal Logic, vol. 31 (1990), 232–240.

    Google Scholar 

  15. Ulrich Felgner, Die Existenz wohlgeordneter, konfinaler Teilmengen in Ketten und das Auswahlaxiom, Mathematische Zeitschrift, vol. 111 (1969), 221–232 (cf. also [16]).

    Google Scholar 

  16. ——, Berichtigung zu “Die Existenz wohlgeordneter, konfinaler Teilmengen in Ketten und das Auswahlaxiom”, Mathematische Zeitschrift, vol. 115 (1970), 392.

    Google Scholar 

  17. Ulrich Felgner and Thomas Jech, Variants of the axiom of choice in set theory with atoms, Fundamenta Mathematicae, vol. 79 (1973), 79–85.

    Google Scholar 

  18. Ulrich Felgner and John K. Truss, The independence of the prime ideal theorem from the order-extension principle, The Journal of Symbolic Logic, vol. 64 (1999), 199–215.

    Google Scholar 

  19. Josep Maria Font, Ramon Jansana, and Don Pigozzi, A survey of abstract algebraic logic, Studia Logica, vol. 74 (2003), 13–97.

    Google Scholar 

  20. Thomas E. Forster and John K. Truss, Non-well-foundedness of well-orderable power sets, The Journal of Symbolic Logic, vol. 68 (2003), 879–884.

    Google Scholar 

  21. ——, Ramsey’s Theorem and König’s Lemma, Archive for Mathematical Logic, vol. 46 (2007), 37–42.

    Google Scholar 

  22. Michael R. Garey and David S. Johnson, Computers and intractability, W. H. Freeman and Co., New York, 1979, A guide to the theory of NP-completeness, A Series of Books in the Mathematical Sciences.

    Google Scholar 

  23. Robert. J. Gauntt, Axiom of choice for finite sets – A solution to a problem of Mostowski, Notices of the American Mathematical Society, vol. 17 (1970), 454.

    Google Scholar 

  24. James D. Halpern, Bases in vector spaces and the axiom of choice, Proceedings of the American Mathematical Society, vol. 17 (1966), 670–673.

    Google Scholar 

  25. Friedrich Hartogs, Über das Problem der Wohlordnung, Mathematische Annalen, vol. 76 (1915), 438–443.

    Google Scholar 

  26. Felix Hausdorff, Grundzüge der Mengenlehre, de Gruyter, Leipzig, 1914 [reprint: Chelsea, New York, 1965].

    Google Scholar 

  27. Leon Henkin, Metamathematical theorems equivalent to the prime ideal theorems for Boolean algebras, Bulletin of the American Mathematical Society, vol. 60 (1954), 388.

    Google Scholar 

  28. Horst Herrlich, Axiom of Choice, [Lecture Notes in Mathematics 1876], Springer-Verlag, Berlin ⋅ Heidelberg, 2006.

    Google Scholar 

  29. Wilfrid Hodges, Krull implies Zorn, Journal of the London Mathematical Society (2), vol. 19 (1979), 285–287.

    Google Scholar 

  30. Paul Howard and Jean E. Rubin, Consequences of the Axiom of Choice, [Mathematical Surveys and Monographs], vol. 59, American Mathematical Society, 1998.

    Google Scholar 

  31. Thomas Jech, The Axiom of Choice, Studies in Logic and the Foundations of Mathematics 75, North-Holland, Amsterdam, 1973.

    Google Scholar 

  32. ——, Set Theory , The Third Millennium Edition, Revised and Expanded, [Springer Monographs in Mathematics], Springer-Verlag, Berlin, 2003.

    Google Scholar 

  33. Akihiro Kanamori, The Higher Infinite, Large Cardinals in Set Theory from Their Beginnings, [Perspectives in Mathematical Logic], Springer-Verlag, Heidelberg, 1994.

    Google Scholar 

  34. Michał Karpiński, Vertex 2-coloring without monochromatic cycles of fixed size is NP-complete, Theoretical Computer Science, vol. 659 (2017), 88–94.

    Google Scholar 

  35. Kyriakos Keremedis, Bases for vector spaces over the two-element field and the axiom of choice, Proceedings of the American Mathematical Society, vol. 124 (1996), 2527–2531.

    Google Scholar 

  36. ——, Extending independent sets to bases and the axiom of choice, Mathematical Logic Quarterly, vol. 44 (1998), 92–98.

    Google Scholar 

  37. Eugene M. Kleinberg, The independence of Ramsey’s theorem, The Journal of Symbolic Logic, vol. 34 (1969), 205–206.

    Google Scholar 

  38. Hellmuth Kneser, Eine direkte Ableitung des Zornschen Lemmas aus dem Auswahlaxiom, Mathematische Zeitschrift, vol. 53 (1950), 110–113.

    Google Scholar 

  39. Wolfgang Krull, Idealtheorie in Ringen ohne Endlichkeitsbedingung, Mathematische Annalen, vol. 101 (1929), 729–744.

    Google Scholar 

  40. Casimir Kuratowski, Une méthode d’élimination des nombres transfinis des raisonnements mathématiques, Fundamenta Mathematicae, vol. 3 (1922), 76–108.

    Google Scholar 

  41. Djuro (George) Kurepa, Über das Auswahlaxiom, Mathematische Annalen, vol. 126 (1953), 381–384.

    Google Scholar 

  42. Hans Läuchli, Auswahlaxiom in der Algebra, Commentarii Mathematici Helvetici, vol. 37 (1962), 1–18.

    Google Scholar 

  43. ——, The independence of the ordering principle from a restricted axiom of choice, Fundamenta Mathematicae, vol. 54 (1964), 31–43.

    Google Scholar 

  44. ——, Coloring infinite graphs and the Boolean prime ideal theorem, Israel Journal of Mathematics, vol. 9 (1971), 422–429.

    Google Scholar 

  45. Azriel Lévy, Axioms of multiple choice, Fundamenta Mathematicae, vol. 50 (1961), 475–483.

    Google Scholar 

  46. ——, Remarks on a paper by J. Mycielski, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 14 (1963), 125–130.

    Google Scholar 

  47. Adolf Lindenbaum and Alfred Tarski, Communication sur les recherches de la théorie des ensembles, Comptes Rendus des Séances de la Société des Sciences et des Lettres de Varsovie, Classe III, vol. 19 (1926), 299–330.

    Google Scholar 

  48. Desmond MacHale, George Boole 1815–64, in Creators of Mathematics: The Irish Connection (Ken Houston, ed.), University College Dublin Press, Dublin, 2000, pp. 27–32.

    Google Scholar 

  49. Adrian Richard David Mathias, The order extension principle, in Axiomatic set theory (Thomas J. Jech, ed.), [Proceedings of Symposia in Pure Mathematics, Vol. XIII, Part II], American Mathematical Society, Providence, Rhode Island, 1974, pp. 179–183.

    Google Scholar 

  50. ——, A remark on rare filters, in Infinite and Finite Sets (A. Hajnal, R. Rado, and V. Sós, eds.), [Colloquium Keszthely, Hungary, 1973; dedicated to P. Erdős on his 60th birthday], Colloquia Mathematica Societatis János Bolyai, vol. 10, North-Holland, Amsterdam, 1975, pp. 1095–1097.

    Google Scholar 

  51. ——, Happy families, Annals of Mathematical Logic, vol. 12 (1977), 59–111.

    Google Scholar 

  52. Carlos H. Montenegro, Weak versions of the axiom of choice for families of finite sets, in Models, algebras, and proofs, Selected papers of the X Latin American symposium on mathematical logic held in Bogotá, Colombia, June 24–29, 1995 (X. Caicedo and C. Montenegro, eds.), [Lecture Notes in Pure and Applied Mathematics 203], Marcel Dekker, New York ⋅ Basel, 1999, pp. 57–60.

    Google Scholar 

  53. Gregory H. Moore, Zermelo’s Axiom of Choice. Its origins, development, and influence, [Studies in the History of Mathematics and Physical Sciences 8], Springer-Verlag, New York, 1982.

    Google Scholar 

  54. Andrzej Mostowski, Axiom of choice for finite sets, Fundamenta Mathematicae, vol. 33 (1945), 137–168.

    Google Scholar 

  55. ——, On the principle of dependent choices, Fundamenta Mathematicae, vol. 35 (1948), 127–130.

    Google Scholar 

  56. Jan Mycielski, Some remarks and problems on the colouring of infinite graphs and the theorem of Kuratowski, Acta Mathematica Academiae Scientiarum Hungaricae, vol. 12 (1961), 125–129.

    Google Scholar 

  57. Jan Mycielski and Hugo Steinhaus, A mathematical axiom contradicting the axiom of choice, Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 10 (1962), 1–3.

    Google Scholar 

  58. David Pincus, Zermelo-Fraenkel consistency results by Fraenkel-Mostowski methods, The Journal of Symbolic Logic, vol. 37 (1972), 721–743.

    Google Scholar 

  59. ——, The strength of the Hahn-Banach theorem, in Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C., 1972), [Lecture Notes in Mathematics 369], Springer-Verlag, Berlin, 1974, pp. 203–248.

    Google Scholar 

  60. Frank P. Ramsey, On a problem of formal logic, Proceedings of the London Mathematical Society, Ser. II, vol. 30 (1930), 264–286.

    Google Scholar 

  61. Helena Rasiowa and Roman Sikorski, A proof of the completeness theorem of Gödel, Fundamenta Mathematicae, vol. 37 (1950), 193–200.

    Google Scholar 

  62. —–, The Mathematics of Metamathematics, [Monografie Matematyczne, Tom 41], Państwowe Wydawnictwo Naukowe, Warsaw, 1963.

    Google Scholar 

  63. Herman Rubin and Jean E. Rubin, Equivalents of the Axiom of Choice, [Studies in Logic and the Foundations of Mathematics], North-Holland, Amsterdam, 1963.

    Google Scholar 

  64. ——, Equivalents of the Axiom of Choice, II, [Studies in Logic and the Foundations of Mathematics 116], North-Holland, Amsterdam, 1985.

    Google Scholar 

  65. Wacław Sierpiński, Leçons sur les nombres transfinis, Gauthier-Villars et Fils, Paris, 1928.

    Google Scholar 

  66. ——, Cardinal and Ordinal Numbers, Państwowe Wydawnictwo Naukowe, Warszawa, 1958.

    Google Scholar 

  67. Bolesław Sobociński, A remark concerning the third theorem about the existence of successors of cardinals, Notre Dame Journal of Formal Logic, vol. 3 (1962), 279–283.

    Google Scholar 

  68. Larry Stockmeyer, Planar 3-colorability is polynomial complete, ACM SIGACT News, vol. 5(3) (1973), 19–25.

    Google Scholar 

  69. Gabriel Sudan, Sur une note de A. Tarski, Comptes Rendus des Séances de l’Institut des Sciences de Roumanie, vol. 3 (1939), 7–8.

    Google Scholar 

  70. Edward Szpilrajn, Sur l’extension de l’ordre partiel, Fundamenta Mathematicae, vol. 16 (1930), 386–389.

    Google Scholar 

  71. Alfred Tajtelbaum-Tarski, Sur quelques théorèmes qui équivalent à l’axiome du choix, Fundamenta Mathematicae, vol. 5 (1924), 147–154.

    Google Scholar 

  72. Alfred Tarski, Une contribution à la théorie de la mesure, Fundamenta Mathematicae, vol. 15 (1930), 42–50.

    Google Scholar 

  73. ——, Grundzüge des Systemenkalküls. I., Fundamenta Mathematicae, vol. 25 (1935), 503–526.

    Google Scholar 

  74. ——, Zur Grundlegung der Boole’schen Algebra I., Fundamenta Mathematicae, vol. 24 (1935), 177–198.

    Google Scholar 

  75. ——, Grundzüge des Systemenkalküls. II., Fundamenta Mathematicae, vol. 26 (1936), 283–301.

    Google Scholar 

  76. ——, Eine äquivalente Formulierung des Auswahlaxioms, Fundamenta Mathematicae, vol. 30 (1938), 197–201.

    Google Scholar 

  77. ——, Ideale in vollständigen Mengenkörpern. I., Fundamenta Mathematicae, vol. 32 (1939), 45–63.

    Google Scholar 

  78. ——, On well-ordered subsets of any set, Fundamenta Mathematicae, vol. 32 (1939), 176–183.

    Google Scholar 

  79. ——, Axiomatic and algebraic aspects of two theorems on sums of cardinals, Fundamenta Mathematicae, vol. 35 (1948), 79–104.

    Google Scholar 

  80. ——, Theorems on the existence of successors of cardinals and the axiom of choice, Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings of the Section of Sciences, Ser. A, vol. 57 (1954), 26–32.

    Google Scholar 

  81. Oswald Teichmüller, Braucht der Algebraiker das Auswahlaxiom?, Deutsche Mathematik, vol. 4 (1939), 567–577.

    Google Scholar 

  82. John K. Truss, Two equivalents of the axiom of choice, Journal of the London Mathematical Society (2), vol. 6 (1972), 175–176.

    Google Scholar 

  83. ——, Finite axioms of choice, Annals of Mathematicsl Logic, vol. 6 (1973), 147–176.

    Google Scholar 

  84. ——, On successors in cardinal arithmetic, Fundamenta Mathematicae, vol. 78 (1973), 7–21.

    Google Scholar 

  85. ——, The well-ordered and well-orderable subsets of a set, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 19 (1973), 211–214.

    Google Scholar 

  86. ——, Some cases of König’s lemma, in Set Theory and Hierarchy Theory (W. Marek, M. Srebrny, and A. Zarach, eds.), [Lecture Notes in Mathematics 537], Springer-Verlag, Berlin, 1976, pp. 273–284.

    Google Scholar 

  87. John W. Tukey, Convergence and Uniformity in Topology, [Annals of Mathematics Studies 2], Princeton University Press, Princeton (New Jersey), 1940.

    Google Scholar 

  88. Kazimierz Wiśniewski, On the axiom of choice for families of finite sets, Fundamenta Mathematicae, vol. 73 (1972), 187–192.

    Google Scholar 

  89. Max Zorn, A remark on method in transfinite algebra, Bulletin of the American Mathematical Society, vol. 41 (1935), 667–670.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halbeisen, L.J. (2017). Forms of Choice. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-60231-8_6

Download citation

Publish with us

Policies and ethics