Skip to main content

Maternal n-3 Fatty Acids and Blood Pressure in Children

  • Chapter
  • First Online:
Diet, Nutrition, and Fetal Programming

Abstract

High blood pressure is a major risk factor for cardiovascular and cerebrovascular diseases, and a leading cause of morbidity and mortality worldwide. There is strong evidence from epidemiological and experimental studies that hypertensive-disorders can have their origins in early life, with proposed risk factors including altered fetal growth and aspects of maternal, fetal and infant nutrition. Experimental studies have demonstrated numerous mechanistic actions through which omega-3 polyunsaturated fatty acids may improve vascular and cardiac health, and clinical trials of omega-3 polyunsaturated fatty acid intake in adults demonstrate blood pressure lowering. Omega-3 fatty acids cross the placental barrier readily, and as such it has been proposed that maternal intake of omega-3 polyunsaturated fatty acids may have similar haemodynamic effects in the offspring, and may program long term haemodynamic benefits. Such proposed improvements in haemodynamic profile may be more pronounced in children at higher risk of hypertensive-disorders due to other adverse early life risk factors or exposures. These hypotheses are supported by some observational and animal data, although high quality evidence from clinical trials is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALA:

Alpha-linolenic acid

BP:

Blood pressure

DBP:

Diastolic blood pressure

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

GA:

Gestational age

LCPUFA:

Long chain polyunsaturated fatty acids

MAP:

Mean arterial pressure

n-3 PUFA:

Omega-3 polyunsaturated fatty acids

n-6:

Omega-6 polyunsaturated fatty acids

SBP:

Systolic blood pressure

References

  1. World Health Organization. A global brief on hypertension: silent killer, global public health crisis: World Health Day 2013.

    Google Scholar 

  2. Franco V, Oparil S, Carretero OA. Hypertensive therapy: part II. Circulation. 2004;109(25):3081–8.

    Article  PubMed  Google Scholar 

  3. Dampney RA, Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol. 2003;71(5):359–84.

    Article  CAS  PubMed  Google Scholar 

  4. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59(1):238–45.

    Article  CAS  PubMed  Google Scholar 

  5. Nuyt AM. Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci. 2008;114(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  6. IJzerman RG, Stehouwer CD, de Geus EJ, et al. Low birth weight is associated with increased sympathetic activity: dependence on genetic factors. Circulation. 2003;108(5):566–71.

    Article  PubMed  Google Scholar 

  7. Mathewson KJ, Van Lieshout RJ, Saigal S, Boyle MH, Schmidt LA. Reduced respiratory sinus arrhythmia in adults born at extremely low birth weight: evidence of premature parasympathetic decline? Int J Psychophysiol. 2014;93(2):198–203.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rakow A, Katz-Salamon M, Ericson M, Edner A, Vanpee M. Decreased heart rate variability in children born with low birth weight. Pediatr Res. 2013;74(3):339–43.

    Article  PubMed  Google Scholar 

  9. Skilton MR, Pahkala K, Viikari JS, et al. The association of dietary alpha-linolenic acid with blood pressure and subclinical atherosclerosis in people born small for gestational age: the Special Turku Coronary Risk Factor Intervention Project study. J Pediatr. 2015;166(5):1252–7. e1252.

    Article  CAS  PubMed  Google Scholar 

  10. Rudyk O, Makra P, Jansen E, et al. Increased cardiovascular reactivity to acute stress and salt-loading in adult male offspring of fat fed non-obese rats. PLoS One. 2011;6(10):e25250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Appel LJ, Brands MW, Daniels SR, et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47(2):296–308.

    Article  CAS  PubMed  Google Scholar 

  12. Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83(6 Suppl):1467S–76S.

    CAS  PubMed  Google Scholar 

  13. Bazan NG. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care. 2007;10(2):136–41.

    Article  CAS  PubMed  Google Scholar 

  14. Grundt H, Nilsen DW. n-3 fatty acids and cardiovascular disease. Haematologica. 2008;93(6):807–12.

    Article  CAS  PubMed  Google Scholar 

  15. Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother. 2006;60(9):502–7.

    Article  CAS  PubMed  Google Scholar 

  16. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol. 2011;58(20):2047–67.

    Article  CAS  PubMed  Google Scholar 

  17. O’Keefe JH, Abuissa H, Sastre A, Steinhaus DM, Harris WS. Effects of omega-3 fatty acids on resting heart rate, heart rate recovery after exercise, and heart rate variability in men with healed myocardial infarctions and depressed ejection fractions. Am J Cardiol. 2006;97(8):1127–30.

    Article  PubMed  Google Scholar 

  18. De Caterina R, Liao JK, Libby P. Fatty acid modulation of endothelial activation. Am J C Nutr. Jan 2000;71(1 Suppl):213S–23S.

    Google Scholar 

  19. Mason PR, Jacob RF, Corbalan JJ, Malinski T. Combination eicosapentaenoic acid and statin treatment reversed endothelial dysfunction in HUVECs exposed to oxidized LDL. J Clin Lipidol. 2014;8(3):342–3.

    Google Scholar 

  20. Ishida T, Naoe S, Nakakuki M, Kawano H, Imada K. Eicosapentaenoic acid prevents saturated fatty acid-induced vascular endothelial dysfunction: involvement of long-chain acyl-CoA synthetase. J Atheroscler Thromb. 2015;22(11):1172–85.

    Article  CAS  PubMed  Google Scholar 

  21. Fer M, Dreano Y, Lucas D, et al. Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch Biochem Biophys. 2008;471(2):116–25.

    Article  CAS  PubMed  Google Scholar 

  22. Wang RX, Chai Q, Lu T, Lee HC. Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity. Cardiovasc Res. 2011;90(2):344–52.

    Article  CAS  PubMed  Google Scholar 

  23. Arnold C, Markovic M, Blossey K, et al. Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of {omega}-3 fatty acids. J Biol Chem. 2010;285(43):32720–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311(6998):171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Armitage JA, Pearce AD, Sinclair AJ, et al. Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency. Lipids. 2003;38(4):459–64.

    Google Scholar 

  26. Korotkova M, Gabrielsson BG, Holmäng A, et al. Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids. Am J Phys Regul Integr Comp Phys. 2005;288(3):R575–9.

    CAS  Google Scholar 

  27. Weisinger HS, Armitage JA, Sinclair AJ, et al. Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nat Med. 2001;7(3):258–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr. 2008;27(5):685–93.

    Article  CAS  PubMed  Google Scholar 

  29. Vidakovic AJ, Gishti O, Steenweg-de Graaff J, et al. Higher maternal plasma n-3 PUFA and lower n-6 PUFA concentrations in pregnancy are associated with lower childhood systolic blood pressure. J Nutr. 2015;145(10):2362–8.

    Article  CAS  PubMed  Google Scholar 

  30. Vidakovic AJ, Gishti O, Voortman T, et al. Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: the Generation R Study [published online ahead of print February 24, 2016]. Am J Clin Nutr. 2016;103 (4):1017–25

    Google Scholar 

  31. Leary SD, Ness AR, Emmett PM, et al. Maternal diet in pregnancy and offspring blood pressure. Arch Dis Child. 2005;90(5):492–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bryant J, Hanson M, Peebles C, et al. Higher oily fish consumption in late pregnancy is associated with reduced aortic stiffness in the child at age 9 years. Circ Res. 2015;116(7):1202–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gustafson KM, Carlson SE, Colombo J, et al. Effects of docosahexaenoic acid supplementation during pregnancy on fetal heart rate and variability: a randomized clinical trial. Prostaglandins Leukot Essent Fat Acids. 2013;88(5):331–8.

    Article  CAS  Google Scholar 

  34. Rytter D, Christensen JH, Bech BH, et al. The effect of maternal fish oil supplementation during the last trimester of pregnancy on blood pressure, heart rate and heart rate variability in the 19-year-old offspring. Br J Nutr. 2012;108(8):1475–83.

    Article  CAS  PubMed  Google Scholar 

  35. Rytter D, Bech BH, Halldorsson T, et al. No association between the intake of marine n-3 PUFA during the second trimester of pregnancy and factors associated with cardiometabolic risk in the 20-year-old offspring. Br J Nutr. 2013;110(11):2037–46.

    Article  CAS  PubMed  Google Scholar 

  36. Olofsson SO, Bostrom P, Andersson L, et al. Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta. 2009;1791(6):448–58.

    Article  CAS  PubMed  Google Scholar 

  37. Jensen CL, Prager TC, Zou Y, et al. Effects of maternal docosahexaenoic acid supplementation on visual function and growth of breast-fed term infants. Lipids. 1999;34(Suppl):S225.

    Article  CAS  PubMed  Google Scholar 

  38. Montgomery C, Speake BK, Cameron A, Sattar N, Weaver LT. Maternal docosahexaenoic acid supplementation and fetal accretion. Br J Nutr. Jul 2003;90(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  39. Arenz S, Ruckerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity – a systematic review. Int J Obes Relat Metab Disord. 2004;28(10):1247–56.

    Article  CAS  PubMed  Google Scholar 

  40. Cunnane SC, Francescutti V, Brenna JT, Crawford MA. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids. 2000;35(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson AC, Forsyth JS, Greene SA, et al. Relation of infant diet to childhood health: seven year follow up of cohort of children in Dundee infant feeding study. BMJ. 1998;316(7124):21–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taittonen L, Nuutinen M, Turtinen J, Uhari M. Prenatal and postnatal factors in predicting later blood pressure among children: cardiovascular risk in young Finns. Pediatr Res. 1996;40(4):627–32.

    Article  CAS  PubMed  Google Scholar 

  43. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet. 2001;357(9254):413–9.

    Article  CAS  PubMed  Google Scholar 

  44. Pivik RT, Dykman RA, Jing H, Gilchrist JM, Badger TM. Early infant diet and the omega 3 fatty acid DHA: effects on resting cardiovascular activity and behavioral development during the first half-year of life. Dev Neuropsychol. 2009;34(2):139–58.

    Article  CAS  PubMed  Google Scholar 

  45. Larnkjaer A, Christensen JH, Michaelsen KF, Lauritzen L. Maternal fish oil supplementation during lactation does not affect blood pressure, pulse wave velocity, or heart rate variability in 2.5-y-old children. J Nutr. 2006;136(6):1539–44.

    CAS  PubMed  Google Scholar 

  46. Forsyth JS, Willatts P, Agostoni C, et al. Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial. BMJ. 2003;326(7396):953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Damsgaard CT, Schack-Nielsen L, Michaelsen KF, et al. Fish oil affects blood pressure and the plasma lipid profile in healthy Danish infants. J Nutr. 2006;136(1):94–9.

    CAS  PubMed  Google Scholar 

  48. Greenberg JA, Bell SJ, Ausdal WV. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol. 2008;1(4):162–9.

    PubMed  PubMed Central  Google Scholar 

  49. Skilton MR, Ayer JG, Harmer JA, et al. Impaired fetal growth and arterial wall thickening: a randomized trial of omega-3 supplementation. Pediatrics. 2012;129(3):e698–703.

    Article  PubMed  Google Scholar 

  50. Skilton MR, Phang M. From the alpha to the omega-3: breaking the link between impaired fetal growth and adult cardiovascular disease. Nutrition. 2016;32:725.

    Article  PubMed  Google Scholar 

Download references

Funding Sources

MRS is supported by a National Heart Foundation of Australia Future Leader Fellowship (100419). HD is supported by an Australian Postgraduate Award (SC0042).

Conflicts of Interest

MRS and MP receive research support from Swisse Wellness Pty Ltd. in the form of investigational product supplies. HD has no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Skilton BSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dissanayake, H.U.W., Phang, M., Skilton, M.R. (2017). Maternal n-3 Fatty Acids and Blood Pressure in Children. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet, Nutrition, and Fetal Programming. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-60289-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60289-9_21

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-60287-5

  • Online ISBN: 978-3-319-60289-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics