Skip to main content

Stem Cell Labelling with Cationised Magnetoferritin

  • Chapter
  • First Online:
Rapid Cell Magnetisation Using Cationised Magnetoferritin

Part of the book series: Springer Theses ((Springer Theses))

  • 191 Accesses

Abstract

Magnetic labelling of stem cells with SPIONs has many important applications, such as remote manipulation [1] or imaging [2]. To achieve adequate magnetisation for these applications, sufficient cellular uptake of SPIONs is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dobson, J., Cartmell, S.H., Keramane, A., El Haj, A.J.: Principles and design of a novel magnetic force mechanical conditioning bioreactor for tissue engineering, stem cell conditioning, and dynamic in vitro screening. IEEE Trans. Nanobiosci. 5(3), 173–177 (2006)

    Article  Google Scholar 

  2. Mahmoudi, M., et al.: Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem. Rev. 111(2), 253–280 (2010)

    Article  Google Scholar 

  3. Bulte, J.W.M., et al.: Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat. Biotechnol. 19(12), 1141–1147 (2001)

    Article  Google Scholar 

  4. Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18(4), 410–414 (2000)

    Article  Google Scholar 

  5. Wilhelm, C., Billotey, C., Roger, J., Pons, J., Bacri, J.-C., Gazeau, F.: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6), 1001–1011 (2003)

    Article  Google Scholar 

  6. Daldrup-Link, H.E., et al.: Targeting of hematopoietic progenitor cells with mr contrast agents. Radiology 228, 760–767 (2003)

    Article  Google Scholar 

  7. Singh, N., Jenkins, G.J., Asadi, R., Doak, S.H.: Potential toxicity of superparamagnetic iron oxide nanoparticles (Spion). Nano Rev. 1, (2010)

    Google Scholar 

  8. Smirnov, P., et al.: In vivo cellular imaging of lymphocyte trafficking by MRI: a tumor model approach to cell-based anticancer therapy. Magn. Reson. Med. 56(3), 498–508 (2006)

    Article  Google Scholar 

  9. Billotey, C., et al.: T-Cell homing to the pancreas in autoimmune mouse models of diabetes: in vivo MR Imaging. Radiology. 236(2), 579–587 (2005)

    Article  Google Scholar 

  10. Farquhar, M.G.: Recovery of surface membrane in anterior pituitary cells. variations in traffic detected with anionic and cationic ferritin. J. Cell Biol. 77(3), R35–R42 (1978)

    Article  Google Scholar 

  11. Wilhelm, C., et al.: Magnetic control of vascular network formation with magnetically labeled endothelial progenitor cells. Biomaterials 28(26), 3797–3806 (2007)

    Article  Google Scholar 

  12. Stark, D.D., et al.: Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168(2), 297–301 (1988)

    Article  Google Scholar 

  13. Simon, G.H., et al.: T1 and T2 relaxivity of intracellular and extracellular Uspio at 1.5 T and 3t clinical Mr scanning. Eur. Radiol. 16(3), 738–745 (2006)

    Article  Google Scholar 

  14. Billotey, C., Wilhelm, C., Devaud, M., Bacri, J.C., Bittoun, J., Gazeau, F.: Cell internalization of anionic maghemite nanoparticles: quantitative effect on magnetic resonance imaging. Magn. Reson. Med. 49(4), 646–654 (2003)

    Article  Google Scholar 

  15. Wilhelm, C., Gazeau, F.: Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29(22), 3161–3174 (2008)

    Article  Google Scholar 

  16. Arbab, A.S., Wilson, L.B., Ashari, P., Jordan, E.K., Lewis, B.K., Frank, J.A.: A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (Spio) nanoparticles: implications for cellular Magnetic Resonance Imaging. NMR Biomed. 18(6), 383–389 (2005)

    Article  Google Scholar 

  17. Soenen, S.J., Himmelreich, U., Nuytten, N., Pisanic, T.R., Ferrari, A., De Cuyper, M.: Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality. Small 6(19), 2136–2145 (2010)

    Article  Google Scholar 

  18. Jing, X.H., et al.: In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine. 75(4), 432–438 (2008)

    Article  Google Scholar 

  19. Levy, M., et al.: Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32(16), 3988–3999 (2011)

    Article  Google Scholar 

  20. Arbab, A.S., et al.: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229(3), 838–846 (2003)

    Article  Google Scholar 

  21. MacLean, I., Sanders, E.: Cationized ferritin and phosvitin uptake by coated vesicles of the early chick embryo. Anat. Embryol. 166(3), 385–397 (1983)

    Article  Google Scholar 

  22. Van Deurs, B., Nilausen, K., Faergeman, O., Meinertz, H.: Coated pits and pinocytosis of cationized ferritin in human skin fibroblasts. Eur. J. Cell Biol. 27(2), 270–278 (1982)

    Google Scholar 

  23. Steinman, R.M., Mellman, I.S., Muller, W.A., Cohn, Z.A.: Endocytosis and the recycling of plasma-membrane. J. Cell Biol. 96(1), 1–27 (1983)

    Article  Google Scholar 

  24. Carreira, S.C., Armstrong, J., Seddon, A., Perriman, A., Hartley-Davies, R., Schwarzacher, W.: Ultra-fast stem cell labelling using cationised magnetoferritin. Nanoscale 8(14), 7474–7483 (2016)

    Article  ADS  Google Scholar 

  25. Baeuerle, P.A., Huttner, W.B.: Chlorate–a potent inhibitor of protein sulfation in intact cells. Biochem. Biophys. Res. Commun. 141(2), 870–877 (1986)

    Article  Google Scholar 

  26. Payne, C.K., Jones, S.A., Chen, C., Zhuang, X.: Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. Traffic 8(4), 389–401 (2007)

    Article  Google Scholar 

  27. Vacha, R., Martinez-Veracoechea, F.J., Frenkel, D.: Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett. 11(12), 5391–5395 (2011)

    Article  ADS  Google Scholar 

  28. Decuzzi, P., Ferrari, M.: The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28(18), 2915–2922 (2007)

    Article  Google Scholar 

  29. Burry, R.W., Wood, J.G.: Contributions of lipids and proteins to the surface charge of membranes. An electron microscopy study with cationized and anionized ferritin. J. Cell Biol. 82(3), 726–741 (1979)

    Article  Google Scholar 

  30. Mutsaers, S.E., Papadimitriou, J.M.: Surface charge of macrophages and their interaction with charged particles. J. Leukoc. Biol. 44(1), 17–26 (1988)

    Google Scholar 

  31. Nel, A.E., et al.: Understanding Biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8(7), 543–557 (2009)

    Article  ADS  Google Scholar 

  32. Kunath, K., et al.: Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Controlled Release 89(1), 113–125 (2003)

    Article  Google Scholar 

  33. Thomas, M., Klibanov, A.M.: Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. 100(16), 9138–9143 (2003)

    Article  ADS  Google Scholar 

  34. Chasteen, N.D., Harrison, P.M.: Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126(3), 182–194 (1999)

    Article  Google Scholar 

  35. Rice, R.H., Means, G.E.: Radioactive labeling of proteins in vitro. J. Biol. Chem. 246(3), 831–832 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Correia Carreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Correia Carreira, S. (2017). Stem Cell Labelling with Cationised Magnetoferritin. In: Rapid Cell Magnetisation Using Cationised Magnetoferritin. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-60333-9_4

Download citation

Publish with us

Policies and ethics