Skip to main content

Improvement of Hydrodesulfurization Catalysts Based on Insight of Nano Structures and Reaction Mechanisms

  • Chapter
  • First Online:
Nanotechnology in Oil and Gas Industries

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

Abstract

Two-dimensional (2D) layer materials have attracted surging interests since the discovery of the super properties of graphene in 2004. Hydrodesulfurization (HDS) catalysts which contain mainly 2D layer Mo(W)S2 active phases with Co or Ni as promoters thus obtain new development chance. Combining characterization technologies with theory calculations, the catalytic structure, electronic properties, and reaction mechanisms have been largely revealed. These new insight understandings have facilitated the design and fabrication of high-performance HDS catalysts for not only ultra-deep desulfurization but also the quality improvement of different type of fuels. However, this needs the subtle tradeoff among different catalytic properties such as HDS, selective hydrogenation, hydrodenitrogenation, and hydrodearomatics for the achievement of the octane value retaining of gasoline, cetane number improvement of diesel, or polyaromatics saturation of heavy fuels, which still have a lot of technique challenges. The industrial application also requires the effective synergism between process and HDS catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso G, Berhault G, Aguilar A et al (2002) Characterization and HDS activity of mesoporous MoS2 catalysts prepared by in situ activation of tetraalkylammonium thiomolybdates. J Catal 208:359–369. doi:10.1006/jcat.2002.3553

    Article  Google Scholar 

  • Alsalme A, Alzaqri N, Alsaleh A et al (2016) Efficient Ni-Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate. Appl Catal B Environ 182:102–108. doi:10.1016/j.apcatb.2015.09.018

    Article  Google Scholar 

  • Alvarez L, Espino J, Ornelas C et al (2004) Comparative study of MoS2 and Co/MoS2 catalysts prepared by ex situ/in situ activation of ammonium and tetraalkylammonium thiomolybdates. J Mol Catal Chem 210:105–117. doi:10.1016/j.molcata.2003.09.002

    Article  Google Scholar 

  • Arrouvel C (2004) Effects of PH2O, PH2S, PH2 on the surface properties of anatase TiO2 and -Al2O3: a DFT study. J Catal 226:260–272. doi:10.1016/j.jcat.2004.05.019

    Article  Google Scholar 

  • Arrouvel C, Breysse M, Toulhoat H, Raybaud P (2005) A density functional theory comparison of anatase (TiO2)- and gamma-Al2O3-supported MoS2 catalysts. J Catal 232:161–178. doi:10.1016/j.jcat.2005.02.018

    Article  Google Scholar 

  • Baubet B, Girleanu M, Gay A-S et al (2016) Quantitative two-dimensional (2D) morphology-selectivity relationship of CoMoS nanolayers: a combined high-resolution high-angle annular dark field scanning transmission electron microscopy (HR HAADF-STEM) and density functional theory (DFT) study. ACS Catal 6:1081–1092. doi:10.1021/acscatal.5b02628

    Article  Google Scholar 

  • Ben Tayeb K, Lamonier C, Lancelot C et al (2010) Study of the active phase of NiW hydrocracking sulfided catalysts obtained from an innovative heteropolyanion based preparation. Catal Today 150:207–212. doi:10.1016/j.cattod.2009.07.094

    Article  Google Scholar 

  • Bezergianni S, Dimitriadis A, Meletidis G (2014) Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures. Fuel 125:129–136. doi:10.1016/j.fuel.2014.02.010

    Article  Google Scholar 

  • Breysse M, Afanasiev P, Geantet C, Vrinat M (2003) Overview of support effects in hydrotreating catalysts. Catal Today 86:5–16. doi:10.1016/S0920-5861(03)00400-0

    Article  Google Scholar 

  • Bui VN, Toussaint G, Laurenti D et al (2009) Co-processing of pyrolisis bio oils and gas oil for new generation of bio-fuels: hydrodeoxygenation of guaiacol and SRGO mixed feed. Catal Today 143:172–178. doi:10.1016/j.cattod.2008.11.024

    Article  Google Scholar 

  • Byskov LS, Nørskov JK, Clausen BS, Topsøe H (1999) DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts. J Catal 187:109–122. doi:10.1006/jcat.1999.2598

    Article  Google Scholar 

  • Candia R, Sørensen O, Villadsen J (1984) Effect of sulfiding temperature on activity and structures of Co-Mo/Al2O3 catalysts. Bull Soc Chim Belg 93:763–773

    Article  Google Scholar 

  • Castillo-Villalon P, Ramirez J, Castaneda R (2012) Relationship between the hydrodesulfurization of thiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene and the local structure of Co in Co-Mo-S sites: infrared study of adsorbed CO. J Catal 294:54–62. doi:10.1016/j.jcat.2012.07.002

    Article  Google Scholar 

  • Chen W, Maugé F, van Gestel J et al (2013a) Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. J Catal 304:47–62. doi:10.1016/j.jcat.2013.03.004

    Article  Google Scholar 

  • Chen J, Farooqi H, Fairbridge C (2013b) Experimental study on co-hydroprocessing canola oil and heavy vacuum gas oil blends. Energy Fuels 27:3306–3315. doi:10.1021/ef4005835

    Article  Google Scholar 

  • Choi J-S, Maugé F, Pichon C et al (2004) Alumina-supported cobalt–molybdenum sulfide modified by tin via surface organometallic chemistry: application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins. Appl Catal Gen 267:203–216. doi:10.1016/j.apcata.2004.03.005

    Article  Google Scholar 

  • Coelho TL, Licea YE, Palacio LA, Faro AC (2015) Heptamolybdate-intercalated CoMgAl hydrotalcites as precursors for HDS-selective hydrotreating catalysts. Catal Today 250:38–46. doi:10.1016/j.cattod.2014.06.016

    Article  Google Scholar 

  • Costa D, Arrouvel C, Breysse M et al (2007) Edge wetting effects of gamma-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: a DFT study. J Catal 246:325–343. doi:10.1016/j.jcat.2006.12.007

    Article  Google Scholar 

  • de Mercader FM, Groeneveld MJ, Kersten SRA et al (2011) Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy Environ Sci 4:985–997. doi:10.1039/c0ee00523a

    Article  Google Scholar 

  • Delmon B, Froment GF (1996) Remote control of catalytic sites by spillover species: a chemical reaction engineering approach. Catal Rev 38:69–100. doi:10.1080/01614949608006454

    Article  Google Scholar 

  • Elizabeth Cervantes-Gaxiola M, Arroyo-Albiter M, Perez-Larios A et al (2013) Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an Al-Ti-Mg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel 113:733–743. doi:10.1016/j.fuel.2013.06.041

    Article  Google Scholar 

  • Fan Y, Shi G, Liu H, Bao X (2009) Morphology tuning of supported MoS2 slabs for selectivity enhancement of fluid catalytic cracking gasoline hydrodesulfurization catalysts. Appl Catal B Environ 91:73–82. doi:10.1016/j.apcatb.2009.05.008

    Article  Google Scholar 

  • Fan Y, Shi G, Bao X (2013) A process for producing ultraclean gasoline by coupling efficient hydrodesulfurization and directional olefin conversion. AIChE J 59:571–581. doi:10.1002/aic.13832

    Article  Google Scholar 

  • Fujikawa T (2009) Highly active HDS catalyst for producing ultra-low sulfur diesel fuels. Top Catal 52:872–879. doi:10.1007/s11244-009-9228-y

    Article  Google Scholar 

  • Fujikawa T, Kimura H, Kiriyama K, Hagiwara K (2006) Development of ultra-deep HDS catalyst for production of clean diesel fuels. Catal Today 111:188–193. doi:10.1016/j.cattod.2005.10.024

    Article  Google Scholar 

  • Gao Q, Ofosu TNK, Ma S-G et al (2011) Catalyst development for ultra-deep hydrodesulfurization (HDS) of dibenzothiophenes. I: effects of Ni promotion in molybdenum-based catalysts. Catal Today 164:538–543. doi:10.1016/j.cattod.2010.10.016

    Article  Google Scholar 

  • Gao D, Duan A, Zhang X et al (2015) Synthesis of CoMo catalysts supported on EMT/FAU intergrowth zeolites with different morphologies and their hydro-upgrading performances for FCC gasoline. Chem Eng J 270:176–186. doi:10.1016/j.cej.2015.02.015

    Article  Google Scholar 

  • Garg S, Bhaskar T, Soni K et al (2008) Novel highly active FSM-16 supported molybdenum catalyst for hydrotreatment. Chem Commun:5310–5311. doi:10.1039/b809808e

  • Ge H, Li X, Qin Z et al (2009) Effects of carbon on the sulfidation and hydrodesulfurization of CoMo hydrating catalysts. Korean J Chem Eng 26:576–581. doi:10.1007/s11814-009-0098-6

    Article  Google Scholar 

  • Ge H, Wen X-D, Ramos MA et al (2014) Carbonization of ethylenediamine coimpregnated CoMo/Al2O3 catalysts sulfided by organic sulfiding agent. ACS Catal 4:2556–2565. doi:10.1021/cs500477x

    Article  Google Scholar 

  • Glasson C, Geantet C, Lacroix M et al (2002) Beneficial effect of carbon on hydrotreating catalysts. J Catal 212:76–85. doi:10.1006/jcat.2002.3781

    Article  Google Scholar 

  • Gonzalez-Cortes SL, Rugmini S, Xiao T et al (2014) Deep hydrotreating of different feedstocks over a highly active Al2O3-supported NiMoW sulfide catalyst. Appl Catal Gen 475:270–281. doi:10.1016/j.apcata.2014.01.045

    Article  Google Scholar 

  • Grønborg SS, Šarić M, Moses PG et al (2016) Atomic scale analysis of sterical effects in the adsorption of 4,6-dimethyldibenzothiophene on a CoMoS hydrotreating catalyst. J Catal 344:121–128. doi:10.1016/j.jcat.2016.09.004

    Article  Google Scholar 

  • Hadj-Aissa A, Dassenoy F, Geantet C, Afanasiev P (2016) Solution synthesis of core-shell Co9S8@MoS2 catalysts. Catal Sci Technol 6:4901–4909. doi:10.1039/c6cy00311g

    Article  Google Scholar 

  • Hallie H (1982) Experience reveals best presuldiing techniques for HDS and HDN catalysts. Oil Gas J 80:69–74

    Google Scholar 

  • Hao L, Xiong G, Liu L et al (2016) Preparation of highly dispersed desulfurization catalysts and their catalytic performance in hydrodesulfurization of dibenzothiophene. Chin J Catal 37:412–419. doi:10.1016/S1872-2067(15)61017-8

    Article  Google Scholar 

  • Heine T (2015) Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties. Acc Chem Res 48:65–72. doi:10.1021/ar500277z

    Article  Google Scholar 

  • Hensen EJM, van der Meer Y, van Veen JAR, Niemantsverdriet JW (2007) Insight into the formation of the active phases in supported NiW hydrotreating catalysts. Appl Catal Gen 322:16–32. doi:10.1016/j.apcata.2007.01.003

    Article  Google Scholar 

  • Hinnemann B, Nørskov JK, Topsøe H (2005) A density functional study of the chemical differences between type I and type II MoS2 -based structures in hydrotreating catalysts. J Phys Chem B 109:2245–2253. doi:10.1021/jp048842y

    Article  Google Scholar 

  • Ho TC (2004) Deep HDS of diesel fuel: chemistry and catalysis. Catal Today 98:3–18. doi:10.1016/j.cattod.2004.07.048

    Article  Google Scholar 

  • Ho TC, Qiao L (2010) Competitive adsorption of nitrogen species in HDS: kinetic characterization of hydrogenation and hydrogenolysis sites. J Catal 269:291–301. doi:10.1016/j.jcat.2009.11.012

    Article  Google Scholar 

  • Hojholt KT, Vennestrom PNR, Tiruvalam R, Beato P (2011) Tight bifunctional hierarchical catalyst. Chem Commun 47:12864–12866. doi:10.1039/c1cc15413c

    Article  Google Scholar 

  • Jiménez Sandoval S, Yang D, Frindt RF, Irwin JC (1991) Raman study and lattice dynamics of single molecular layers of MoS2. Phys Rev B 44:3955–3962. doi:10.1103/PhysRevB.44.3955

    Article  Google Scholar 

  • Kelty SP, Berhault G, Chianelli RR (2007) The role of carbon in catalytically stabilized transition metal sulfides. Appl Catal Gen 322:9–15. doi:10.1016/j.apcata.2007.01.017

    Article  Google Scholar 

  • Krebs E, Silvi B, Raybaud P (2008a) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier’s principle for the Co(Ni)MoS active phase in reaction conditions. Catal Today 130:160–169. doi:10.1016/j.cattod.2007.06.081

    Article  Google Scholar 

  • Krebs E, Silvi B, Daudin A, Raybaud P (2008b) A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases. J Catal 260:276–287. doi:10.1016/j.jcat.2008.09.026

    Article  Google Scholar 

  • Krebs E, Daudin A, Raybaud P (2009) A DFT study of CoMoS and NiMoS catalysts: from nano-crystallite morphology to selective hydrodesulfurization. Oil Gas Sci Technol - Rev IFP 64:707–718. doi:10.2516/ogst/2009004

    Article  Google Scholar 

  • La Parola V, Deganello G, Venezia AM (2004) CoMo catalysts supported on aluminosilicates: synergy between support and sodium effects. Appl Catal Gen 260:237–247. doi:10.1016/j.apcata.2003.10.020

    Article  Google Scholar 

  • Lai W, Chen Z, Zhu J et al (2016a) A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale 8:3823–3833. doi:10.1039/c5nr08841k

    Article  Google Scholar 

  • Lai W, Xu Y, Ren Y et al (2016b) Insight into the effect of non-stoichiometric sulfur on a NiMoS hydrodesulfurization catalyst. Catal Sci Technol 6:497–506. doi:10.1039/c5cy01142f

    Article  Google Scholar 

  • Lauritsen JV, Besenbacher F (2015) Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts. J Catal 328:49–58. doi:10.1016/j.jcat.2014.12.034

    Article  Google Scholar 

  • Lauritsen JV, Bollinger MV, Laegsgaard E et al (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J Catal 221:510–522. doi:10.1016/j.jcat.2003.09.015

    Article  Google Scholar 

  • Lauritsen JV, Kibsgaard J, Olesen GH et al (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS(2)-based hydrotreating catalysts. J Catal 249:220–233. doi:10.1016/j.jcat.2007.04.013

    Article  Google Scholar 

  • Le Z, Afanasiev P, Li D et al (2008) Solution synthesis of the unsupported Ni–W sulfide hydrotreating catalysts. Catal Today 130:24–31. doi:10.1016/j.cattod.2007.07.002

    Article  Google Scholar 

  • Lélias MA, Le Guludec E, Mariey L et al (2010) Effect of EDTA addition on the structure and activity of the active phase of cobalt–molybdenum sulfide hydrotreatment catalysts. Catal Today 150:179–185. doi:10.1016/j.cattod.2009.07.107

    Article  Google Scholar 

  • Leyva C, Ancheyta J, Travert A et al (2012) Activity and surface properties of NiMo/SiO2-Al2O3 catalysts for hydroprocessing of heavy oils. Appl Catal Gen 425:1–12. doi:10.1016/j.apcata.2012.02.033

    Article  Google Scholar 

  • Li M, Li H, Jiang F et al (2010) The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts. Catal Today 149:35–39. doi:10.1016/j.cattod.2009.03.017

    Article  Google Scholar 

  • Li P, Liu X, Zhang C et al (2016) Selective hydrodesulfurization of gasoline on Co/MoS2±x catalyst: effect of sulfur defects in MoS2±x. Appl Catal Gen 524:66–76. doi:10.1016/j.apcata.2016.06.003

    Article  Google Scholar 

  • Liang J, Liu Y, Zhao J et al (2014) Waugh-type NiMo heteropolycompounds as more effective precursors of hydrodesulfurization catalyst. Catal Lett 144:1735–1744. doi:10.1007/s10562-014-1326-1

    Article  Google Scholar 

  • Liu H, Li Y, Yin C et al (2016) One-pot synthesis of ordered mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization. Appl Catal B Environ 198:493–507. doi:10.1016/j.apcatb.2016.06.004

    Article  Google Scholar 

  • Martin C, Lamonier C, Fournier M et al (2005) Evidence and characterization of a new decamolybdocobaltate cobalt salt: an efficient precursor for hydrotreatment catalyst preparation. Chem Mater 17:4438–4448. doi:10.1021/cm0503634

    Article  Google Scholar 

  • Mazurelle J, Lamonier C, Lancelot C et al (2008) Use of the cobalt salt of the heteropolyanion [Co2Mo10O38H4]6− for the preparation of CoMo HDS catalysts supported on Al2O3, TiO2 and ZrO2. Catal Today 130:41–49. doi:10.1016/j.cattod.2007.07.008

    Article  Google Scholar 

  • Mey D, Brunet S, Canaff C et al (2004) HDS of a model FCC gasoline over a sulfided CoMo/Al2O3 catalyst: effect of the addition of potassium. J Catal 227:436–447. doi:10.1016/j.jcat.2004.07.013

    Article  Google Scholar 

  • Mohanty S, Mouli KC, Soni K et al (2012) Catalytic hydrotreatment using NiMo/MAS catalysts synthesized from ZSM-5 nano-clusters. Appl Catal Gen 419:1–12. doi:10.1016/j.apcata.2011.12.015

    Article  Google Scholar 

  • Moses PG, Hinnemann B, Topsøe H, Nørskov JK (2009) The effect of co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: a density functional study. J Catal 268:201–208. doi:10.1016/j.jcat.2009.09.016

    Article  Google Scholar 

  • Nikulshin PA, Salnikov VA, Mozhaev AV et al (2014) Relationship between active phase morphology and catalytic properties of the carbon–alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions. J Catal 309:386–396. doi:10.1016/j.jcat.2013.10.020

    Article  Google Scholar 

  • North J, Poole O, Alotaibi A et al (2015) Efficient hydrodesulfurization catalysts based on Keggin polyoxometalates. Appl Catal -Gen 508:16–24. doi:10.1016/j.apcata.2015.10.001

    Article  Google Scholar 

  • Novoselov KS (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  Google Scholar 

  • Ojeda J, Escalona N, Baeza P et al (2003) Synergy between Mo/SiO2 and Co/SiO2 beds in HDS: a remote control effect? Chem Commun:1608–1609. doi:10.1039/B301647C

  • Okamoto Y (2003) Preparation of Co–Mo/Al2O3 model sulfide catalysts for hydrodesulfurization and their application to the study of the effects of catalyst preparation. J Catal. doi:10.1016/S0021-9517(03)00029-0

  • Okamoto Y, Ochiai K, Kawano M, Kubota T (2004) Evaluation of the maximum potential activity of Co–Mo/Al2O3 catalysts for hydrodesulfurization. J Catal 222:143–151. doi:10.1016/j.jcat.2003.10.024

    Article  Google Scholar 

  • Palcheva R, Spojakina A, Jiratova K, Kaluza L (2010) Effect of co on HDS activity of alumina-supported heteropolymolybdate. Catal Lett 137:216–223. doi:10.1007/s10562-010-0361-9

    Article  Google Scholar 

  • Pashigreva AV, Bukhtiyarova GA, Klimov OV et al (2010) Activity and sulfidation behavior of the CoMo/Al2O3 hydrotreating catalyst: the effect of drying conditions. Catal Today 149:19–27. doi:10.1016/j.cattod.2009.07.096

    Article  Google Scholar 

  • Peng C, Guo R, Fang X (2016) Improving ultra-deep desulfurization efficiency by catalyst stacking technology. Catal Lett 146:701–709. doi:10.1007/s10562-015-1675-4

    Article  Google Scholar 

  • Pimerzin AA, Nikulshin PA, Mozhaev AV et al (2015) Investigation of spillover effect in hydrotreating catalysts based on Co2Mo10− heteropolyanion and cobalt sulphide species. Appl Catal B Environ 168–169:396–407. doi:10.1016/j.apcatb.2014.12.031

    Article  Google Scholar 

  • Pinheiro A, Hudebine D, Dupassieux N, Geantet C (2009) Impact of oxygenated compounds from lignocellulosic biomass pyrolysis oils on gas oil hydrotreatment. Energy Fuels 23:1007–1014. doi:10.1021/ef800507z

    Article  Google Scholar 

  • Ramos M, Berhault G, Ferrer DA et al (2012) HRTEM and molecular modeling of the MoS2-Co9S8 interface: understanding the promotion effect in bulk HDS catalysts. Catal Sci Technol 2:164–178. doi:10.1039/c1cy00126d

    Article  Google Scholar 

  • Rana M, Ramirez J, Gutierrezalejandre A et al (2007) Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent. J Catal 246:100–108. doi:10.1016/j.jcat.2006.11.025

    Article  Google Scholar 

  • Rashidi F, Kharat AN, Rashidi AM et al (2010) Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods. Eur J Inorg Chem 2010:1544–1551. doi:10.1002/ejic.200901103

    Article  Google Scholar 

  • Rashidi F, Sasaki T, Rashidi AM et al (2013) Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: impact of support, phosphorus, and/or boron on the structure and catalytic activity. J Catal 299:321–335. doi:10.1016/j.jcat.2012.11.012

    Article  Google Scholar 

  • Raybaud P (2007) Understanding and predicting improved sulfide catalysts: insights from first principles modeling. Appl Catal Gen 322:76–91. doi:10.1016/j.apcata.2007.01.005

    Article  Google Scholar 

  • Romero-Galarza A, Gutiérrez-Alejandre A, Ramírez J (2011) Analysis of the promotion of CoMoP/Al2O3 HDS catalysts prepared from a reduced H–P–Mo heteropolyacid Co salt. J Catal 280:230–238. doi:10.1016/j.jcat.2011.03.021

    Article  Google Scholar 

  • Schweiger H, Raybaud P, Toulhoat H (2002) Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions. J Catal 212:33–38. doi:10.1006/jcat.2002.3737

    Article  Google Scholar 

  • Scott CE, Perez-Zurita MJ, Carbognani LA et al (2015) Preparation of NiMoS nanoparticles for hydrotreating. Catal Today 250:21–27. doi:10.1016/j.cattod.2014.07.033

    Article  Google Scholar 

  • Semeykina VS, Parkhomchuk EV, Polukhin AV et al (2016) CoMoNi catalyst texture and surface properties in heavy oil processing. part I: hierarchical macro/mesoporous alumina support. Ind Eng Chem Res 55:3535–3545. doi:10.1021/acs.iecr.5b04730

    Article  Google Scholar 

  • Shan S, Yuan P, Han W et al (2015) Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. J Catal 330:288–301. doi:10.1016/j.jcat.2015.06.019

    Article  Google Scholar 

  • Singh R, Kunzru D, Sivakumar S (2016a) Monodispersed ultrasmall NiMo metal oxide nanoclusters as hydrodesulfurization catalyst. Appl Catal B Environ 185:163–173. doi:10.1016/j.apcatb.2015.12.013

    Article  Google Scholar 

  • Singh R, Kunzru D, Sivakumar S (2016b) Co-promoted MoO3 nanoclusters for hydrodesulfurization. Catal Sci Technol 6:5949–5960. doi:10.1039/c5cy02221e

    Article  Google Scholar 

  • Sintarako P, Praserthdam P, Thammongkol V et al (2015) The suppression of a basic nitrogen compound influence on hydrodesulfurization activity of dibenzothiophene in treated diesel over Al2O3 supported CoMo catalysts by ZrO2 as a secondary support. Catal Comm 62:89–94. doi:10.1016/j.catcom.2015.01.013

    Article  Google Scholar 

  • Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68. doi:10.1016/j.cattod.2010.05.011

    Article  Google Scholar 

  • Sun M, Nicosia D, Prins R (2003) The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal Today 86:173–189. doi:10.1016/S0920-5861(03)00410-3

    Article  Google Scholar 

  • Tang T, Zhang L, Fu W et al (2013) Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber bundles with unprecedented hydrodesulfurization activities. J Am Chem Soc 135:11437–11440. doi:10.1021/ja4043388

    Article  Google Scholar 

  • Topsøe H (1981) In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: evidence for and nature of a Co-Mo-S phase. J Catal 68:433–452. doi:10.1016/0021-9517(81)90114-7

    Article  Google Scholar 

  • Topsøe H (2007) The role of Co–Mo–S type structures in hydrotreating catalysts. Appl Catal Gen 322:3–8. doi:10.1016/j.apcata.2007.01.002

    Article  Google Scholar 

  • Tuxen A, Gøbel H, Hinnemann B et al (2011) An atomic-scale investigation of carbon in MoS2 hydrotreating catalysts sulfided by organosulfur compounds. J Catal 281:345–351. doi:10.1016/j.jcat.2011.05.018

    Article  Google Scholar 

  • Tuxen AK, Füchtbauer HG, Temel B et al (2012) Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalysts. J Catal 295:146–154. doi:10.1016/j.jcat.2012.08.004

    Article  Google Scholar 

  • Valencia D, Peña L, García-Cruz I (2012) Reaction mechanism of hydrogenation and direct desulfurization routes of dibenzothiophene-like compounds: a density functional theory study. Int J Quantum Chem 112:3599–3605. doi:10.1002/qua.24242

    Article  Google Scholar 

  • van Haandel L, Bremmer M, Kooyman PJ et al (2015) Structure–activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1– x)S2/Al2O3 catalysts. ACS Catal 5:7276–7287. doi:10.1021/acscatal.5b01806

    Article  Google Scholar 

  • Villarroel M, Baeza P, Escalona N et al (2008) MD//Mo and MD//W [MD = Mn, Fe, Co, Ni, Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization. Appl Catal Gen 345:152–157. doi:10.1016/j.apcata.2008.04.033

    Article  Google Scholar 

  • Vonortas A, Kubicka D, Papayannakos N (2014) Catalytic co-hydroprocessing of gasoil-palm oil/AVO mixtures over a NiMo/gamma-Al2O3 catalyst. Fuel 116:49–55. doi:10.1016/j.fuel.2013.07.074

    Article  Google Scholar 

  • Wan G, Duan A, Zhang Y et al (2010) NiW/AMBT catalysts for the production of ultra-low sulfur diesel. Catal Today 158:521–529. doi:10.1016/j.cattod.2010.08.021

    Article  Google Scholar 

  • Wang L, He W, Yu Z (2013) Transition-metal mediated carbon–sulfur bond activation and transformations. Chem Soc Rev 42:599–621. doi:10.1039/C2CS35323G

    Article  Google Scholar 

  • Wang H, Lu Z, Kong D et al (2014) Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8:4940–4947. doi:10.1021/nn500959v

    Article  Google Scholar 

  • Wang H, Yuan H, Sae Hong S et al (2015a) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44:2664–2680. doi:10.1039/C4CS00287C

    Article  Google Scholar 

  • Wang T, Fan Y, Wang X et al (2015b) Selectivity enhancement of CoMoS catalysts supported on tri-modal porous Al2O3 for the hydrodesulfurization of fluid catalytic cracking gasoline. Fuel 157:171–176. doi:10.1016/j.fuel.2015.05.005

    Article  Google Scholar 

  • Wang W, Li L, Tan S et al (2016) Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol. Fuel 179:1–9. doi:10.1016/j.fuel.2016.03.068

    Article  Google Scholar 

  • Wen X-D, Cao Z, Li Y-W et al (2006) Structure and energy of Mo27SxCy clusters: a density functional theory study. J Phys Chem B 110:23860–23869. doi:10.1021/jp063323b

    Article  Google Scholar 

  • Yin C, Liu H, Zhao L et al (2016) Study for the production of ultra-low sulfur gas oils on a highly loaded NiMoW catalyst. Catal Today 259:409–416. doi:10.1016/j.cattod.2015.04.028

    Article  Google Scholar 

  • Yoosuk B, Song C, Kim JH et al (2010) Effects of preparation conditions in hydrothermal synthesis of highly active unsupported NiMo sulfide catalysts for simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Catal Today 149:52–61. doi:10.1016/j.cattod.2009.05.001

    Article  Google Scholar 

  • Zepeda TA, Infantes-Molina A, de Leon JND et al (2014) Hydrodesulfurization enhancement of heavy and light S-hydrocarbons on NiMo/HMS catalysts modified with Al and P. Appl Catal -Gen 484:108–121. doi:10.1016/j.apcata.2014.06.033

    Article  Google Scholar 

  • Zuo D, Vrinat M, Nie H et al (2004) The formation of the active phases in sulfided NiW/Al2O3 catalysts and their evolution during post-reduction treatment. Catal Today 93–95:751–760. doi:10.1016/j.cattod.2004.06.078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ge, H., Qiu, Z., Ge, Z., Han, W. (2018). Improvement of Hydrodesulfurization Catalysts Based on Insight of Nano Structures and Reaction Mechanisms. In: Saleh, T. (eds) Nanotechnology in Oil and Gas Industries. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-60630-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60630-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60629-3

  • Online ISBN: 978-3-319-60630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics