Skip to main content

Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 3))

Abstract

This article presents a novel approach, named Monte Carlo Motion Planning (MCMP), to the problem of motion planning under uncertainty, i.e., to the problem of computing a low-cost path that fulfills probabilistic collision avoidance constraints. MCMP estimates the collision probability (CP) of a given path by sampling via Monte Carlo the execution of a reference tracking controller (in this paper we consider a linear-quadratic-Gaussian controller). The key algorithmic contribution of this paper is the design of statistical variance-reduction techniques, namely control variates and importance sampling, to make such a sampling procedure amenable to real-time implementation. MCMP applies this CP estimation procedure to motion planning by iteratively (i) computing an (approximately) optimal path for the deterministic version of the problem (here, using the FMT\(^*\,\)algorithm), (ii) computing the CP of this path, and (iii) inflating or deflating the obstacles by a common factor depending on whether the CP is higher or lower than a target value. The advantages of MCMP are threefold: (i) asymptotic correctness of CP estimation, as opposed to most current approximations, which, as shown in this paper, can be off by large multiples and hinder the computation of feasible plans; (ii) speed and parallelizability, and (iii) generality, i.e., the approach is applicable to virtually any planning problem provided that a path tracking controller and a notion of distance to obstacles in the configuration space are available. Numerical results illustrate the correctness (in terms of feasibility), efficiency (in terms of path cost), and computational speed of MCMP.

Lucas Janson and Edward Schmerling contributed equally to this work. This work was supported by NASA under the Space Technology Research Grants Program, Grant NNX12AQ43G. Lucas Janson was partially supported by NIH training grant T32GM096982.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agha-Mohammadi, A., Chakravorty, S., Amato, N.M.: FIRM: sampling-based feedback motion planning under motion uncertainty and imperfect measurements. Int. J. Robot. Res. 33(2), 268–304 (2014)

    Article  Google Scholar 

  2. Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N., How, J.P.: Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns. Auton. Robots 35(1), 51–76 (2013)

    Article  Google Scholar 

  3. Berg, J.V.D., Abbeel, P., Goldberg, K.: LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information. Int. J. Robot. Res. 30(7), 895–913 (2011)

    Article  Google Scholar 

  4. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A Fast Dynamic Language for Technical Computing (2012). http://arxiv.org/abs/1209.5145

  5. Blackmore, L., Ono, M., Bektassov, A., Williams, B.C.: A probabilistic particle-control approximation of chance-constrained stochastic predictive control. IEEE Trans. Robot. 26(3), 502–517 (2010)

    Article  Google Scholar 

  6. Hsu, D.: Randomized Single-Query Motion Planning in Expansive Spaces. Ph.D. thesis, Stanford University (2000)

    Google Scholar 

  7. Janson, L., Schmerling, E., Pavone, M.: Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty (Extended Version) (2015). http://arxiv.org/abs/1504.08053

  8. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kothari, M., Postlethwaite, I.: A probabilistically robust path planning algorithm for UAVs using rapidly-exploring random trees. J. Intell. Robot. Syst. 71(2), 231–253 (2013)

    Article  Google Scholar 

  10. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems, pp. 65–72 (2008)

    Google Scholar 

  11. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. LaValle, S.M.: Motion planning: wild frontiers. IEEE Robot. Autom. Mag. 18(2), 108–118 (2011)

    Article  Google Scholar 

  13. LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. Int. J. Robot. Res. 20(5), 378–400 (2001). doi:10.1177/02783640122067453. http://ijr.sagepub.com/content/20/5/378.short

  14. Liu, W., Ang, M.H.: Incremental Sampling-Based Algorithm for Risk-Aware Planning Under Motion Uncertainty. In: Proceedings of IEEE Conference on Robotics and Automation, pp. 2051–2058 (2014)

    Google Scholar 

  15. Luders, B., Kothari, M., How, J.P.: Chance constrained RRT for probabilistic robustness to environmental uncertainty. In: AIAA Conferenvce on Guidance, Navigation and Control (2010)

    Google Scholar 

  16. Luders, B.D., Karaman, S., How, J.P.: Robust sampling-based motion planning with asymptotic optimality guarantees. In: AIAA Conference on Guidance, Navigation and Control (2013)

    Google Scholar 

  17. Luders, B.D., Sugel, I., How, J.P.: Robust trajectory planning for autonomous parafoils under wind uncertainty. In: AIAA Conference on Guidance, Navigation and Control (2013)

    Google Scholar 

  18. Oldewurtel, F., Jones, C., Morari, M.: A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback. In: Proceedings of IEEE Conference on Decision and Control, pp. 4731–4736 (2008)

    Google Scholar 

  19. Ono, M., Williams, B.C.: Iterative risk allocation: a new approach to robust model predictive control with a joint chance constraint. In: Proceedings of IEEE Conference on Decision and Control, pp. 3427–3432 (2008)

    Google Scholar 

  20. Ono, M., Williams, B.C., Blackmore, L.: Probabilistic planning for continuous dynamic systems under bounded risk. J. Artif. Intell. Res. 46, 511–577 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Owen, A.B.: Monte Carlo theory, methods and examples (2013). http://statweb.stanford.edu/owen/mc/

  22. Patil, S., van den Berg, J., Alterovitz, R.: Estimating probability of collision for safe motion planning under Gaussian motion and sensing uncertainty. In: Proceedings of IEEE Conference on Robotics and Automation, pp. 3238–3244 (2012)

    Google Scholar 

  23. Reif, J.H.: Complexity of the Mover’s Problem and Generalizations. In: 20th Annual IEEE Symposium on Foundations of Computer Science, pp. 421–427 (1979)

    Google Scholar 

  24. Schmerling, E., Janson, L., Pavone, M.: Optimal sampling-based motion planning under differential constraints: the drift case with linear affine dynamics. In: Proceedings IEEE Conference on Decision and Control (2015)

    Google Scholar 

  25. Sun, W., Torres, L.G., Berg, J.V.D., Alterovitz, R.: Safe motion planning for imprecise robotic manipulators by minimizing probability of collision. In: International Symposium on Robotics Research (2013)

    Google Scholar 

  26. Sun, W., Patil, S., Alterovitz, R.: High-frequency replanning under uncertainty using parallel sampling-based motion planning. IEEE Trans. Robot. 31(1), 104–116 (2015)

    Article  Google Scholar 

  27. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001)

    Article  MATH  Google Scholar 

  28. Vitus, M.P., Tomlin, C.J.: On feedback design and risk allocation in chance constrained control. In: Proceedings of IEEE Conference on Decision and Control, pp. 734–739 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Janson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Janson, L., Schmerling, E., Pavone, M. (2018). Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-60916-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60916-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60915-7

  • Online ISBN: 978-3-319-60916-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics