Skip to main content

Math Model of UAV Multi Rotor Prototype with Fixed Wing Aerodynamic Structure for a Flight Simulator

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2017)

Abstract

This article presents the math modeling of a fixed wing Unmanned Aerial Vehicle (UAV) for a flight simulator, using a numerical method. The UAV is controlled through radio control or mission plan. The mathematical model contains a numerical approximation considering multiple Single Input Single Output (SISO) systems that related altitude, pitch, roll and yaw angle as an input parameters and yaw speed, x, y, z axis speed as output parameters.

The signal analysis shows unpredictable behavior during manual controlled flight, but an acceptable stable group of data in controlled mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29, 315–378 (2012)

    Article  Google Scholar 

  2. Aguilar, W.G., Costa-Castelló, R., Angulo, C.: Control Autónomo de Cuadricopteros para Seguimiento de Trayectorias. IX Congr. Cienc. y Tecnol. ESPE 2014, 144–149 (2014)

    Google Scholar 

  3. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for micro aerial vehicles. Neural Process. Lett. 43, 459–477 (2016)

    Article  Google Scholar 

  4. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance for low-cost UAVs. In: 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pp. 503–508. IEEE (2017)

    Google Scholar 

  5. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6, 10 (2017)

    Article  Google Scholar 

  6. Ładyżyńska-Kozdraś, E.: Modeling and numerical simulation of unmanned aircraft vehicle restricted by non-holonomic constraints. J. Theor. Appl. Mech. 50, 251–268 (2012)

    Google Scholar 

  7. Aguilar, W.G., Luna, M.A., Moya, J.F., Abad, V., Parra, H., Ruiz, H.: Pedestrian detection for UAVs using cascade classifiers with meanshift. In: 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pp. 509–514 (2017)

    Google Scholar 

  8. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 2014, 46 (2014)

    Article  Google Scholar 

  9. Aguilar, W., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5, 70 (2016)

    Article  Google Scholar 

  10. Aguilar, W.G., Angulo, C.: Optimization of robust video stabilization based on motion intention for micro aerial vehicles. In: 2014 International Multi-Conference on Systems Signals Devices (SSD) (2014, accepted)

    Google Scholar 

  11. Michael, N., Scaramuzza, D., Kumar, V.: Special issue on micro-UAV perception and control. Auton. Robots. 33, 1–3 (2012)

    Article  Google Scholar 

  12. Quadcopter body frame model and analysis. Fascicle Manag. Technol. Eng. 120, 3–6 (2016)

    Google Scholar 

  13. Mullen, T., Mullen, T.: An analysis of numerical methods on traffic flow models (2015)

    Google Scholar 

  14. Xu, Y., Tong, C., Li, H.: Flight control of a quadrotor under model uncertainties. Int. J. Micro Air Veh. 7, 1–19 (2015)

    Article  Google Scholar 

  15. Mokhtari, A., Benallegue, A.: Dynamic feedback controller of Euler angles and wind parameters estimation for a quadrotor unmanned aerial vehicle. In: Proceedings of the 2004 IEEE International Conference on Robotics and Automation ICRA 2004, vol. 3, pp. 2359–2366 (2004)

    Google Scholar 

  16. Pounds, P., Mahony, R., Corke, P.: Modelling and control of a quad-rotor robot. In: Proceedings of the 2006 Australasian Conference on Robotics and Automation, pp. 1–26 (2006).

    Google Scholar 

  17. Garijo Verdejo, D., López Pérez, J.I., Pérez Estrada, I.: Control de un vehículo aéreo no tripulado (2009)

    Google Scholar 

  18. Bouabdallah, S., Noth, A., Siegwart, R., Siegwan, R.: PID vs LQ control techniques applied to an indoor micro quadrotor. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2451–2456 (2004)

    Google Scholar 

  19. Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: AR-drone as a platform for robotic research and education. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21975-7_16

    Chapter  Google Scholar 

  20. Tayebi, A., McGilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14, 562–571 (2006)

    Article  Google Scholar 

  21. Erginer, B., Altug, E.: Modeling and PD control of a quadrotor VTOL vehicle. In: 2007 IEEE Intelligent Vehicled Symposium, pp. 894–899 (2007)

    Google Scholar 

  22. Krajník, T., Vonásek, V., Fišer, D., Faigl, J.: Unmanned aircraft systems. In: Obdržálek, D., Gottscheber, A. (eds.) EUROBOT 2011. CCIS, vol. 161, pp. 172–186. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21975-7_16

    Chapter  Google Scholar 

  23. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control systems design. Int. J. Adapt. Control Signal Process. 16, 173–174 (2002)

    Article  Google Scholar 

  24. Abbott, I.H., Von Doenhoff, A.E.: Theory of Wing Sections: Including a Summary of Airfoil data. Press, 11, 693 (1959)

    Google Scholar 

Download references

Acknowledgement

This work is part of the research project 2016-PIC-024 from Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Orbea, D., Moposita, J., Aguilar, W.G., Paredes, M., León, G., Jara-Olmedo, A. (2017). Math Model of UAV Multi Rotor Prototype with Fixed Wing Aerodynamic Structure for a Flight Simulator. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10324. Springer, Cham. https://doi.org/10.1007/978-3-319-60922-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60922-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60921-8

  • Online ISBN: 978-3-319-60922-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics