Skip to main content

The Role of Angiogenesis in Non-small Cell Lung Cancer Tumor Behavior

  • Chapter
  • First Online:
Biochemical Basis and Therapeutic Implications of Angiogenesis

Abstract

Currently, lung cancer is the leading cause of cancer-related death in western nations. Risk factors are usually associated with tobacco consumption, occupational exposure, radon and passive smoking. To date, many factors influence NSCLC behavior and, therefore, clinical response to therapeutic targets, such as epidermal growth factor (EGF) and its receptor (EGFR) and vascular endothelial growth factor (VEGF) and its receptor (VEGFR). Angiogenesis-related genetic polymorphisms are of primary interest in NSCLC research. Angiogenesis genetic polymorphisms, such as VEGF − 2578 C/A and VEGF − 1154 G/A, were correlated in previous studies with increased tumor VEGF expression, vascular density and poor survival. However, anti-angiogenic drugs did not show to be cost-effectiveness in NSCLC. This topic will address research involving angiogenesis genetic polymorphisms and NSCLC behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EGF:

Epidermal growth factor

EGFR:

EGF receptor

EGFR:

Epidermal growth factor receptor

GWAS:

Genome-wide associate study

HBO:

Hyperbaric oxygen

HIF:

Hypoxia inducible factor

KDR receptor:

Kinase insert domain receptor

mTOR:

Mammalian target of rapamycin

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

PFS:

Progression free survival

PIK3:

Phosphoinositide 3-kinase

PlGF:

Placental growth factor

SNP:

Single nucleotide polymorphism

SOS:

Guanine nucleotide exchange factor sos

TKI:

Tyrosine kinase inhibitor

VEGF:

Vascular endothelial growth factor

VEGFR:

VEGF receptor

References

  1. Alberg A, Brock M, Samet J (2005) Epidemiology of lung cancer: looking to the future. J Clin Oncol 23(14):3175–3185

    Article  PubMed  Google Scholar 

  2. Lopez A, Collishaw N, Piha T (1994) A descriptive model of the cigarette epidemic in developed countries. Tob Control 3(3):242–247

    Article  PubMed Central  Google Scholar 

  3. Asmis TR, Ding K, Seymour L, Shepherd FA, Leighl NB, Winton TL, Whitehead M, Spaans JN, Graham BC, Goss GD (2008) Age and comorbidity as independent prognostic factors in the treatment of non–small-cell lung cancer: a review of National Cancer Institute of Canada clinical trials group trials. J Clin Oncol 26(1):54–59

    Article  CAS  PubMed  Google Scholar 

  4. Brundage M, Davies D, Mackillop W (2002) Prognostic factors in non-small cell lung cancer. Chest 122(3):1037–1057

    Article  PubMed  Google Scholar 

  5. de Mello RA, Marques DS, Medeiros R, Araújo AM (2011) Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies. World J Clin Oncol 2(11):367–376

    Article  PubMed  PubMed Central  Google Scholar 

  6. Futamura Y, Sawa T, Hasegawa T, Horiba A, Ishiguro T, Yoshida T, Iida T, Marui T, Murakami E, Azuma K et al (2011) Stereotactic radiotherapy following chemo-radiotherapy for lymph node metastasis of stage III non-small-cell lung cancer. Gan to Kagaku Ryoho 38(12):2191–2193

    PubMed  Google Scholar 

  7. Hanagiri T, Sugio K, Mizukami M, Ichiki Y, Sugaya M, Yasuda M, Takenoyama M, Yasumoto K (2008) Significance of smoking as a postoperative prognostic factor in patients with non-small cell lung cancer. J Thorac Oncol 3(10):1127–1132

    Article  PubMed  Google Scholar 

  8. Rotunno M, Yu K, Lubin JH, Consonni D, Pesatori AC, Goldstein AM, Goldin LR, Wacholder S, Welch R, Burdette L et al (2009) Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression. PLoS One 4(5):e5652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S, Hlatky L, Vajkoczy P, Huber P, Folkman J (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69(3):836

    Article  CAS  PubMed  Google Scholar 

  10. Balasubramanian S, Brown N, Reed M (2002) Role of genetic polymorphisms in tumour angiogenesis. Br J Cancer 87(10):1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bonnesen B, Pappot H, Holmstav J, Skov BG (2009) Vascular endothelial growth factor a and vascular endothelial growth factor receptor 2 expression in non-small cell lung cancer patients: relation to prognosis. Lung Cancer 66(3):314–318

    Article  PubMed  Google Scholar 

  12. Araujo A, Ribeiro R, Azevedo I, Coelho A, Soares M, Sousa B, Pinto D, Lopes C, Medeiros R, Scagliotti G (2007) Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer--a review of the literature. Oncologist 12(2):201–210

    Article  CAS  PubMed  Google Scholar 

  13. Zhu C, da Cunha SG, Ding K, Sakurada A, Cutz J, Liu N, Zhang T, Marrano P, Whitehead M, Squire J (2008) Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR. 21. J Clin Oncol 26(26):4268–4275

    Article  CAS  PubMed  Google Scholar 

  14. Selvaggi G, Novello S, Torri V, Leonardo E, De Giuli P, Borasio P, Mossetti C, Ardissone F, Lausi P, Scagliotti G (2004) Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Ann Oncol 15(1):28–32

    Article  CAS  PubMed  Google Scholar 

  15. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11(2):121–128

    Article  CAS  PubMed  Google Scholar 

  16. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388

    Article  CAS  PubMed  Google Scholar 

  17. Shepherd F, Rodrigues Pereira J, Ciuleanu T, Tan E, Hirsh V, Thongprasert S, Campos D, Maoleekoonpiroj S, Smylie M, Martins R (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353(2):123–132

    Article  CAS  PubMed  Google Scholar 

  18. Zhou C, Wu Y, Chen G, Feng J, Liu X, Wang C, Zhang S, Wang J, Zhou S, Ren S et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancer Oncol 12(8):735–742

    Article  CAS  Google Scholar 

  19. Mok T, Wu Y, Thongprasert S, Yang C, Chu D, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957

    Article  CAS  PubMed  Google Scholar 

  20. Herbst RS, Fukuoka M, Baselga J (2004) Gefitinib—a novel targeted approach to treating cancer. Nat Rev Cancer 4(12):979–987

    Article  CAS  Google Scholar 

  21. de Mello RA, Costa BM, Reis RM, Hespanhol V (2012) Insights into angiogenesis in non-small cell lung cancer: molecular mechanisms, polymorphic genes, and targeted therapies. Recent Pat Anticancer Drug Discov 7(1):118–131

    Article  PubMed  Google Scholar 

  22. Schneider B, Wang M, Radovich M, Sledge G, Badve S, Thor A, Flockhart D, Hancock B, Davidson N, Gralow J (2008) Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J Clin Oncol 26(28):4672–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sheppard PM (1955) Genetic variability and polymorphism: synthesis. Cold Spring Harb Symp Quant Biol 20:271–275

    Article  CAS  PubMed  Google Scholar 

  24. Hsu TC, Klatt O (1958) Mammalian chromosomes in vitro. IX. On genetic polymorphism in cell populations. J Natl Cancer Inst 21(3):437–473

    CAS  PubMed  Google Scholar 

  25. El-Khoueiry A, Lenz H (2011) Pharmacogenomics. In: DeVita VT, Lawrence TS, Rosenberg SA (eds) CANCER: principles and practice of oncology, 9th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  26. Marques Santos DS (2012) “Papel prognóstico e preditivo do polimorfismo da IL-8-251 T/A no carcinoma epitelial do ovário”. Master degree. Porto: Instituto de Ciências Biomédicas Abel Salazar, University of Porto

    Google Scholar 

  27. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, Sherry S, Mullikin JC, Mortimore BJ, Willey DL (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933

    Article  CAS  PubMed  Google Scholar 

  28. Harris AL (2002) Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47

    Article  CAS  PubMed  Google Scholar 

  29. Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT (2009) Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med 9(4):442–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crabtree H, Cramer W (1933) The action of radium on cancer cells. II.--some factors determining the susceptibility of cancer cells to radium. Proc R Soc Lond B 113(782):238–250

    Article  CAS  Google Scholar 

  31. Schwarz G (1909) Über Desensibilisierung gegen Röntgen- und Radiumstrahlen. Münchener Medizinische Wochenschrift 24:1–2

    Google Scholar 

  32. Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis rev 26(2):333–339

    Article  CAS  PubMed  Google Scholar 

  33. Kim J, Gao P, Dang CV (2007) Effects of hypoxia on tumor metabolism. Cancer Metastasis Rev 26(2):291–298

    Article  PubMed  CAS  Google Scholar 

  34. Varlotto J, Stevenson MA (2005) Anemia, tumor hypoxemia, and the cancer patient. Int J Radiat Oncol Biol Phys 63(1):25–36

    Article  PubMed  Google Scholar 

  35. Boogaerts M, Mittelman M, Vaupel P (2005) Beyond anaemia management: evolving role of erythropoietin therapy in neurological disorders, multiple myeloma and tumour hypoxia models. Oncology 69(2):22–30

    Article  CAS  PubMed  Google Scholar 

  36. Gray L, Conger A, Ebert M, Hornsey S, Scott O (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26(312):638–648

    Article  CAS  PubMed  Google Scholar 

  37. Mayer R, Hamilton-Farrell MR, van der Kleij AJ, Schmutz J, Granström G, Sicko Z, Melamed Y, Carl UM, Hartmann KA, Jansen EC (2005) Hyperbaric oxygen and radiotherapy. Strahlenther Onkol 181(2):113–123

    Article  PubMed  Google Scholar 

  38. Feldmeier J, Carl U, Hartmann K, Sminia P (2003) Hyperbaric oxygen: does it promote growth or recurrence of malignancy? Undersea Hyperb Med 30(1):1–18

    CAS  PubMed  Google Scholar 

  39. Bennett M, Feldmeier J, Smee R, Milross C (2005) Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database Syst Rev 4:CD005007

    Google Scholar 

  40. Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21

    Article  CAS  PubMed  Google Scholar 

  41. Overgaard J (2007) Hypoxic radiosensitization: adored and ignored. J Clin Oncol 25(26):4066–4074

    Article  PubMed  Google Scholar 

  42. Kaanders JHAM, Bussink J, van der Kogel AJ (2002) ARCON: a novel biology-based approach in radiotherapy. Lancet Oncol 3(12):728–737

    Article  PubMed  Google Scholar 

  43. Jordan BF, Sonveaux P (2012) Targeting tumor perfusion and oxygenation to improve the outcome of anticancer therapy. Front Pharmacol 3:94

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rewari AN, Haffty BG, Wilson LD, Son YH, Joe JK, Ross DA, Papac RJ, Sasaki CT, Fischer JJ (2006) Postoperative concurrent chemoradiotherapy with mitomycin in advanced squamous cell carcinoma of the head and neck: results from three prospective randomized trials. Cancer J 12(2):123–129

    PubMed  Google Scholar 

  45. Roberts KB, Urdaneta N, Vera R, Vera A, Gutierrez E, Aguilar Y, Ott S, Medina I, Sempere P, Rockwell S (2000) Interim results of a randomized trial of mitomycin C as an adjunct to radical radiotherapy in the treatment of locally advanced squamous-cell carcinoma of the cervix. Int J Cancer 90(4):206–223

    Article  CAS  PubMed  Google Scholar 

  46. Bennewith KL, Dedhar S (2011) Targeting hypoxic tumour cells to overcome metastasis. BMC Cancer 11:504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Albertella MR, Loadman PM, Jones PH, Phillips RM, Rampling R, Burnet N, Alcock C, Anthoney A, Vjaters E, Dunk CR (2008) Hypoxia-selective targeting by the bioreductive prodrug AQ4N in patients with solid tumors: results of a phase I study. Clin Cancer Res 14(4):1096–1104

    Article  CAS  PubMed  Google Scholar 

  48. Jameson MB, Rischin D, Pegram M, Gutheil J, Patterson AV, Denny WA, Wilson WR (2010) A phase I trial of PR-104, a nitrogen mustard prodrug activated by both hypoxia and aldo-keto reductase 1C3, in patients with solid tumors. Cancer Chemother Pharmacol 65(4):791–801

    Article  CAS  PubMed  Google Scholar 

  49. Chen CH, Lai JM, Chou TY, Chen CY, Su LJ, Lee YC, Cheng TS, Hong YR, Chou CK, Whang-Peng J et al (2009) VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PLoS One 4(4):e5052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Choong N, Salgia R, Vokes E (2008) Key signaling pathways and targets in lung cancer therapy. Clin Lung Cancer 8(suppl 2):52–60

    Google Scholar 

  51. Kerbel R (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. González RP, Leyva A, Melo RAB, Moreira RDM, Pessoa C, Farias RF, Moraes MO (2000) Método para estudo in vivo da angiogênese: indução de neovascularização na córnea de coelho. Acta Cir Bras 15(3):168–173

    Article  Google Scholar 

  53. An SJ, Huang YS, Chen ZH, Su J, Yang Y, Chen JG, Yan HH, Lin QX, Yang JJ, Yang XN et al (2012) Posttreatment plasma VEGF levels may be associated with the overall survival of patients with advanced non-small cell lung cancer treated with bevacizumab plus chemotherapy. Med Oncol 29(2):627–632

    Article  CAS  PubMed  Google Scholar 

  54. Bremnes R, Camps C, Sirera R (2006) Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer 51(2):143–158

    Article  PubMed  Google Scholar 

  55. Dvorak H (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    Article  CAS  PubMed  Google Scholar 

  56. Glubb DM, Cerri E, Giese A, Zhang W, Mirza O, Thompson EE, Chen P, Das S, Jassem J, Rzyman W (2011) Novel functional germline variants in the VEGF receptor 2 gene and their effect on gene expression and microvessel density in lung cancer. Clin Cancer Res 17(16):5257–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dowlati A, Gray R, Sandler A, Schiller J, Johnson D (2008) Cell adhesion molecules, vascular endothelial growth factor, and basic fibroblast growth factor in patients with non–small cell lung cancer treated with chemotherapy with or without bevacizumab—an eastern cooperative oncology group study. Clin Cancer Res 14(5):1407–1412

    Article  CAS  PubMed  Google Scholar 

  58. Duda D, Jain R, Willett C (2007) Antiangiogenics: the potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J Clin Oncol 25(26):4033–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Folkman J (2008) Tumor angiogenesis: from bench to bedside. In: Marmé D, Fusenig N (eds) Tumor angiogenesis: basic concepts and cancer therapy, 8th edn. Springer, Berlin, pp 3–28

    Chapter  Google Scholar 

  60. Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61

    Article  CAS  PubMed  Google Scholar 

  61. Guan X, Yin M, Wei Q, Zhao H, Liu Z, Wang LE, Yuan X, O'Reilly M, Komaki R, Liao Z (2010) Genotypes and haplotypes of the VEGF gene and survival in locally advanced non-small cell lung cancer patients treated with chemoradiotherapy. BMC Cancer 10(1):431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Dong Q, Feng J, Huang J, Bao G, Sha H, Gu W (2002) Vascular endothelial growth factor promotes hematogenous metastasis of cancer cells in patients with non-small cell lung cancer. Zhonghua Zhong Liu Za Zhi 24(2):142–146

    CAS  PubMed  Google Scholar 

  63. Forgacs E, Zöchbauer-Müller S, Oláh E, Minna J (2001) Molecular genetic abnormalities in the pathogenesis of human lung cancer. Pathol Oncol Res 7(1):6–13

    Article  CAS  PubMed  Google Scholar 

  64. Gessner C, Rechner B, Hammerschmidt S, Kuhn H, Hoheisel G, Sack U, Ruschpler P, Wirtz H (2009) Angiogenic markers in breath condensate identify non-small cell lung cancer. Lung Cancer 68:177

    Google Scholar 

  65. Hong TT, Zhang RX, Wu XH, Hua D (2012) Polymorphism of vascular endothelial growth factor− 1154G>A (rs1570360) with cancer risk: a meta-analysis of 16 case–control studies. Mol Biol Rep 39(5):5283–5289

    Google Scholar 

  66. Shahbazi M, Pravica V, Nasreen N, Fakhoury H, Fryer A, Strange R, Hutchinson P, Osborne J, Lear J, Smith A et al (2002) Association between functional polymorphism in EGF gene and malignant melanoma. Lancet 359(9304):397–401

    Article  CAS  PubMed  Google Scholar 

  67. Araújo A, Costa B, Pinto-Correia A, Fragoso M, Ferreira P, Dinis-Ribeiro M, Costa S, Reis R, Medeiros R (2011) Association between EGF +61A/G polymorphism and gastric cancer in Caucasians. World J Gastroenterol 17(4):488–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zhang Y, Cao C, Liang K (2010) Genetic polymorphism of epidermal growth factor 61A>G and cancer risk: a meta-analysis. Cancer Epidemiol 34(2):150–156

    Article  CAS  PubMed  Google Scholar 

  69. Costa B, Ferreira P, Costa S, Canedo P, Oliveira P, Silva A, Pardal F, Suriano G, Machado J, Lopes J et al (2007) Association between functional EGF+61 polymorphism and glioma risk. Clin Cancer Res 13(9):2621–2626

    Article  CAS  PubMed  Google Scholar 

  70. Bhowmick D, Zhuang Z, Wait S, Weil R (2004) A functional polymorphism in the EGF gene is found with increased frequency in glioblastoma multiforme patients and is associated with more aggressive disease. Cancer Res 64(4):1220–1223

    Article  CAS  PubMed  Google Scholar 

  71. Wu G, Hasenberg T, Magdeburg R, Bönninghoff R, Sturm J, Keese M (2009) Association between EGF, TGF-beta1, VEGF gene polymorphism and colorectal cancer. World J Surg 33(1):124–129

    Article  PubMed  Google Scholar 

  72. Kang H, Choi J, Lee W, Kam S, Cha S, Kim C, Jung T (2007) Park J: +61A>G polymorphism in the EGF gene does not increase the risk of lung cancer. Respirology 12(6):902–905

    Article  PubMed  Google Scholar 

  73. Lim Y, Kim J, Song J, Hong M, Jin S, Yoon S, Park H, Choe B, Lee J, Yim S et al (2005) Epidermal growth factor gene polymorphism is different between schizophrenia and lung cancer patients in Korean population. Neurosci Lett 374(3):157–160

    Article  CAS  PubMed  Google Scholar 

  74. de Mello RA, Ferreira M, Costa S, Costa BM, Pires FS, Neves I, Almeida MI, Cunha J, Oliveira P, Hespanhol V et al (2012) Association between EGF +61 genetic polymorphisms and non-small cell lung cancer increased risk in a Portuguese population: a case-control study. Tumour Biol 33:1341. PMID:22457050

    Article  CAS  PubMed  Google Scholar 

  75. Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF (2003) Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 63(7):1589–1595

    CAS  PubMed  Google Scholar 

  76. Brandt R, Eisenbrandt R, Leenders F, Zschiesche W, Binas B, Juergensen C, Theuring F (2000) Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation. Oncogene 19(17):2129–2137

    Article  CAS  PubMed  Google Scholar 

  77. Araújo A, Coelho A, de Mello RA, Azevedo I, Soares M, Queiroga H, Teixeira E, Parente B, Barata F (2012) Personalizing medicine - strategies for implementing the evaluation of ALK rearrangement in non-small-cell lung cancer in Portugal. Rev Port Pneumol 18:244. http://dx.doi.org/10.1016/j.rppneu.2012.04.011

    Article  PubMed  Google Scholar 

  78. Dong J, Dai J, Shu Y, Pan S, Xu L, Chen W, Wang Y, Jin G, Ma H, Zhang M (2010) Polymorphisms in EGFR and VEGF contribute to non-small cell lung cancer survival in a Chinese population. Carcinogenesis 31(6):1080–1086

    Article  CAS  PubMed  Google Scholar 

  79. Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, Mirabello L, Jacobs K, Wheeler W, Yeager M (2009) A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am J Hum Genet 85(5):679–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ito H, MacKay JD, Hosono S, Hida T, Yatabe Y, Mitsudomi T, Brennan P, Tanaka H, Matsuo K (2012) Association between a genome-wide association study-identified locus and the risk of lung cancer in Japanese population. J Thorac Oncol 7(5):790–798

    Article  CAS  PubMed  Google Scholar 

  81. Bae EY, Lee SY, Kang BK, Lee EJ, Choi YY, Kang HG, Choi JE, Jeon HS, Lee WK, Kam S (2012) Replication of results of genome-wide association studies on lung cancer susceptibility loci in a Korean population. Respirology 17(4):699–706

    Article  PubMed  Google Scholar 

  82. Li Y, Sheu C, Ye Y, de Andrade M, Wang L, Chang S, Aubry M, Aakre J, Allen M, Chen F et al (2010) Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol 11(4):321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Taylor J, Tyekucheva S, King DC, Hardison RC, Miller W, Chiaromonte F (2006) ESPERR: learning strong and weak signals in genomic sequence alignments to identify functional elements. Genome Res 16:1596–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Feldser DM, Hackett JA, Greider CW (2003) Telomere dysfunction and the initiation of genome instability. Nat Rev Cancer 3:623–627

    Article  CAS  PubMed  Google Scholar 

  85. Fernandez-Garcia I, Ortiz-de-Solorzano C, Montuenga LM (2008) Telomeres and telomerase in lung cancer. J Thorac Oncol 3:1085–1088

    Article  PubMed  Google Scholar 

  86. Lantuejoul S, Soria J, Moro-Sibilot D, Morat L, Veyrenc S, Lorimier P, Brichon P, Sabatier L, Brambilla C, Brambilla E (2004) Differential expression of telomerase reverse transcriptase (hTERT) in lung tumours. Br J Cancer 90(6):1222–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aviel-Ronen S, Coe BP, Lau SK, da Cunha SG, Zhu CQ, Strumpf D, Jurisica I, Lam WL, Tsao MS (2008) Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features. Proc Natl Acad Sci U S A 105(29):10155–10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A, Qureshi M, Dong Q, Gu X, Chen WV (2008) Common 5p15. 33 and 6p21. 33 variants influence lung cancer risk. Nat Genet 40(12):1407–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vincenti V, Cassano C, Rocchi M, Persico MG (1996) Assignment of the vascular endothelial growth factor gene to human chromosome 6p21. 3. Circulation 93(8):1493–1495

    Article  CAS  PubMed  Google Scholar 

  90. Naik NA, Bhat IA, Afroze D, Rasool R, Mir H, Andrabi SI, Shah S, Siddiqi MA, Shah ZA (2012) Vascular endothelial growth factor a gene (VEGFA) polymorphisms and expression of VEGFA gene in lung cancer patients of Kashmir Valley (India). Tumour Biol 33(3):833–839

    Article  CAS  PubMed  Google Scholar 

  91. Stevens A, Soden J, Brenchley P, Ralph S, Ray D (2003) Haplotype analysis of the polymorphic human vascular endothelial growth factor gene promoter. Cancer Res 63(4):812–816

    CAS  PubMed  Google Scholar 

  92. Vaziri S, Kim J, Ganapathi M, Ganapathi R (2010) Vascular endothelial growth factor polymorphisms: role in response and toxicity of tyrosine kinase inhibitors. Curr Oncol Rep 12(2):102–108

    Article  CAS  PubMed  Google Scholar 

  93. Zhai R, Liu G, Zhou W, Su L, Heist R, Lynch T, Wain J, Asomaning K, Lin X, Christiani D (2008) Vascular endothelial growth factor genotypes, haplotypes, gender, and the risk of non–small cell lung cancer. Clin Cancer Res 14(2):612–617

    Article  CAS  PubMed  Google Scholar 

  94. Toschi L, Cappuzzo F (2007) Understanding the new genetics of responsiveness to epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 12(2):211–220

    Article  CAS  PubMed  Google Scholar 

  95. Harris R, Chung E, Coffey R (2003) EGF receptor ligands. Exp Cell Res 284(1):2–13

    Article  CAS  PubMed  Google Scholar 

  96. Shepherd FA, Rosell R (2007) Weighing tumor biology in treatment decisions for patients with non-small cell lung cancer. J Thorac Oncol 2(Suppl 2):S68–S76

    Article  PubMed  Google Scholar 

  97. Sculier J, Chansky K, Crowley J, Van Meerbeeck J, Goldstraw P (2008) The impact of additional prognostic factors on survival and their relationship with the anatomical extent of disease expressed by the 6th edition of the TNM classification of malignant Tumors and the proposals for the 7th edition. J Thorac Oncol 3(5):457–466

    Article  PubMed  Google Scholar 

  98. Singhal S, Vachani A, Antin-Ozerkis D, Kaiser L, Albelda S (2005) Prognostic implications of cell cycle, apoptosis, and angiogenesis biomarkers in non–small cell lung cancer: a review. Clin Cancer Res 11(11):3974–3986

    Article  CAS  PubMed  Google Scholar 

  99. Shen L, Ji H (2011) More on crizotinib. N Engl J med 364(8):777

    CAS  PubMed  Google Scholar 

  100. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S, McDermott U (2009) Clinical features and outcome of patients with non–small-cell lung cancer who harbor EML4-ALK. J Clin Oncol 27(26):4247–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schrump D, Giaccone G, Kelsey K, Marks L (2008) Non small cell lung cancer. In: DeVita V, Lawrence T, Rosenberg S, Weinberg R, DePinho R (eds) DeVita, Hellman, and Rosenberg's cancer: principles & practice of oncology, vol 1, 8th edn. Lippincott Williams & Wilkins, Philadelphia, pp 896–939

    Google Scholar 

  102. Pao W, Miller V, Politi K, Ricly G, Somwar R, Zakowski M, Kris M, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2(3):225–235

    Article  CAS  Google Scholar 

  103. Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH (2006) DNA repair by ERCC1 in non–small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355(10):983–991

    Article  CAS  PubMed  Google Scholar 

  104. Masago K, Fujita S, Kim Y, Hatachi Y, Fukuhara A, Nagai H, Irisa K, Ichikawa M, Mio T, Mishima M (2009) Effect of vascular endothelial growth factor polymorphisms on survival in advanced stage non small cell lung cancer. Cancer Sci 100(10):1917–1922

    Article  CAS  PubMed  Google Scholar 

  105. Dajczman E, Kasymjanova G, Kreisman H, Swinton N, Pepe C, Small D (2008) Should patient-rated performance status affect treatment decisions in advanced lung cancer? J Thorac Oncol 3(10):1133–1136

    Article  PubMed  Google Scholar 

  106. Pérez-Soler R, Chachoua A, Hammond L, Rowinsky E, Huberman M, Karp D, Rigas J, Clark G, Santabárbara P, Bonomi P (2004) Determinants of tumor response and survival with erlotinib in patients with non—small-cell lung cancer. J Clin Oncol 22(16):3238–3247

    Article  PubMed  CAS  Google Scholar 

  107. Miller V, Riely G, Zakowski M, Li A, Patel J, Heelan R, Kris M, Sandler A, Carbone D, Tsao A (2008) Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol 26(9):1472–1478

    Article  CAS  PubMed  Google Scholar 

  108. Brugger W, Triller N, Blasinska-Morawiec M, Curescu S, Sakalauskas R, Manikhas G, Mazieres J, Whittom R, Ward C, Mayne K et al (2011) Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol 29(31):4113–4120

    Article  CAS  PubMed  Google Scholar 

  109. Jain L, Vargo CA, Danesi R, Sissung TM, Price DK, Venzon D, Venitz J, Figg WD (2009) The role of vascular endothelial growth factor SNPs as predictive and prognostic markers for major solid tumors. Mol Cancer Ther 8(9):2496–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zacharatos P, Kotsinas A, Tsantoulis P, Evangelou K, Kletsas D, Asimacopoulos PJ, Doussis-Anagnostopoulou I, Pezzella F, Gatter K, Papavassiliou AG et al (2001) Relationship of the K-ras/c-mos expression patterns with angiogenesis in non-small cell lung carcinomas. Mol Med 7(9):590–597

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Heist RS, Zhai R, Liu G, Zhou W, Lin X, Su L, Asomaning K, Lynch TJ, Wain JC, Christiani DC (2008) VEGF polymorphisms and survival in early-stage non-small-cell lung cancer. J Clin Oncol 26(6):856–862

    Article  CAS  PubMed  Google Scholar 

  112. Bieniasz M, Oszajca K, Eusebio M, Kordiak J, Bartkowiak J, Szemraj J (2009) The positive correlation between gene expression of the two angiogenic factors: VEGF and BMP-2 in lung cancer patients. Lung Cancer 66(3):319–326

    Article  PubMed  Google Scholar 

  113. Lee SJ, Lee SY, Jeon HS, Park SH, Jang JS, Lee GY, Son JW, Kim CH, Lee WK, Kam S et al (2005) Vascular endothelial growth factor gene polymorphisms and risk of primary lung cancer. Cancer Epidemiol Biomark Prev 14(3):571–575

    Article  CAS  Google Scholar 

  114. Rodrigues P, Furriol J, Tormo E, Ballester S, Lluch A, Eroles P (2012) The single-nucleotide polymorphisms +936 C/T VEGF and −710 C/T VEGFR1 are associated with breast cancer protection in a Spanish population. Breast Cancer Res Treat 133:769. PMID: 22315135

    Article  CAS  PubMed  Google Scholar 

  115. Koukourakis M, Papazoglou D, Giatromanolaki A, Bougioukas G, Maltezos E, Siviridis E (2004) VEGF gene sequence variation defines VEGF gene expression status and angiogenic activity in non-small cell lung cancer. Lung Cancer 46(3):293–298

    Article  PubMed  Google Scholar 

  116. Yang F, Tang X, Riquelme E, Behrens C, Nilsson MB, Giri U, Varella-Garcia M, Byers LA, Lin HY, Wang J (2011) Increased VEGFR-2 gene copy is associated with chemoresistance and shorter survival in patients with non–small-cell lung carcinoma who receive adjuvant chemotherapy. Cancer Res 71(16):5512–5521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V, Leighl N, Mezger J, Archer V, Moore N (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27(8):1227–1234

    Article  CAS  PubMed  Google Scholar 

  118. Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ (2012) Lung cancer in never smokers–a review. Eur J Cancer 48(9):1299–1311

    Article  CAS  PubMed  Google Scholar 

  119. Li Y, Sun Z, Cunningham JM, Aubry MC, Wampfler JA, Croghan GA, Johnson C, Wu D, Aakre JA, Molina J (2011) Genetic variations in multiple drug action pathways and survival in advanced stage non–small cell lung cancer treated with chemotherapy. Clin Cancer Res 17(11):3830–3840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ma F, Xu B, Lin D, Sun T, Shi Y (2011) Effect of rs2293347 polymorphism in EGFR on the clinical efficacy of gefitinib in patients with non-small cell lung cancer. Zhongguo Fei Ai Za Zhi 14(8):642–645

    PubMed  Google Scholar 

  121. Nie Q, Yang X, An S, Zhang X, Yang J, Zhong W, Liao R, Chen Z, Su J, Xie Z (2011) CYP1A1* 2A polymorphism as a predictor of clinical outcome in advanced lung cancer patients treated with EGFR-TKI and its combined effects with EGFR intron 1 (CA) n polymorphism. Eur J Cancer 47(13):1962–1970

    Article  CAS  PubMed  Google Scholar 

  122. Dy G, Adjei A (2009) Emerging therapeutic targets in non-small cell lung cancer. Proc am Thorac Soc 6(2):218–223

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interest

The authors declare that they do not have any competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Andrade De Mello MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

De Mello, R.A., Luis, M., Araújo, A., Reis, R.M., Hespanhol, V. (2017). The Role of Angiogenesis in Non-small Cell Lung Cancer Tumor Behavior. In: Mehta, J., Mathur, P., Dhalla, N. (eds) Biochemical Basis and Therapeutic Implications of Angiogenesis. Advances in Biochemistry in Health and Disease, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-61115-0_10

Download citation

Publish with us

Policies and ethics