Skip to main content

Abstract

This book chapter will discuss advancements in analog circuit design specifically for various wearable healthcare applications. There are a number of general trends that can be observed in this field, like multimodal sensing applications, which will be discussed. There will be a focus on analog circuits for some of the most relevant signal modalities including ExG, bio-impedance, and photoplethysmogram (PPG). Common circuit topologies and some recent state-of-the-art implementations for those will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Song, S., et al.: A low-voltage chopper-stabilized amplifier for fetal ECG monitoring with a 1.41 power efficiency factor. IEEE Tran. Biomed. Circuits Syst. 9(2), 237–247 (2015)

    Article  Google Scholar 

  2. Yaul, F.M., Chandrakasan, A.P.: A sub-μW 36nV/√Hz chopper amplifier for sensors using a noise-efficient inverter-based 0.2V-supply input stage. IEEE ISSCC. 94–95 (2016)

    Google Scholar 

  3. Harpe, P., Gao, H., van Dommele, A.R., Cantatore, E., van Roermund, A.: 0.20 mm2 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid State Circuits. 51(1), 240–248 (2016)

    Article  Google Scholar 

  4. Enz, C.C., Temes, G.C.: Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE. 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  5. Harrison, R.R., Charles, C.: A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits. 38(6), 958–965 (2003)

    Article  Google Scholar 

  6. Chandrakumar, H., Marković, D.: 5.5 a 2 μW 40 mVpp linear-input-range chopper- stabilized bio-signal amplifier with boosted input impedance of 300 MΩ and electrode-offset filtering. IEEE ISSCC. 59, 96–97 (2016)

    Google Scholar 

  7. Birk, C., Mora-Puchalt, G.: A 60V capacitive gain 27nV/√Hz 137dB CMRR PGA with ±10V inputs. IEEE ISSCC. 376–377 (2012)

    Google Scholar 

  8. Mohan, R., Zaliasl, S., Gielen, G., Van Hoof, C., Van Helleputte, N., Yazicioglu, R.F.: A 0.6V 0.015mm2 time-based biomedical readout for ambulatory applications in 40nm CMOS. IEEE ISSCC. 482–483 (2016)

    Google Scholar 

  9. Muller, R., Gambini, S., Rabaey, J.M.: A 0.013mm2 5uW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid State Circuits. 47(1), 232–243 (2012)

    Article  Google Scholar 

  10. Van Helleputte, N., et al.: A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J. Solid State Circuits. 50(1), 230–244 (2015)

    Article  Google Scholar 

  11. Bin Altaf, M.A., Zhang, C., Yoo, J.: A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator. IEEE J. Solid State Circuits. 50(11), 2728–2740 (2015)

    Article  Google Scholar 

  12. Konijnenburg, M., et al.: A multi(bio)sensor acquisition system with integrated processor, power management, 8×8 LED drivers, and simultaneously synchronized ECG, BIO-Z, GSR, and two PPG readouts. IEEE J. Solid-State Circuits. 51(11), 2584–2595 (2016)

    Article  Google Scholar 

  13. Yan, L., et al.: A 13μA analog signal processing IC for accurate recognition of multiple intra-cardiac signals. IEEE Trans. Biomed Circuits Syst. 7(6), 785–795 (2013)

    Article  Google Scholar 

  14. Xu, J., et al.: A low power configurable Bio-Impedance Spectroscopy (BIS) ASIC with simultaneous ECG and respiration recording functionality. Proc. IEEE ESSCIRC, pp. 396–399 (2015)

    Google Scholar 

  15. Ko, H., et al.: Ultra low power Bioimpedance IC with intermediate frequency shifting chopper. IEEE Trans. Circuits Syst. II. 63(3), 259–263 (2016)

    Article  Google Scholar 

  16. Kassanos, P., et al.: An integrated analog readout for multi-frequency Bioimpedance measurements. IEEE Sensors J. 14(8), 2792–2800 (2014)

    Article  Google Scholar 

  17. TI AFE4300 Datasheet.

    Google Scholar 

  18. Reddy, K.A., George, B., Mohan, N.M., Kumar, V.J.: A novel calibration-free method of measurement of oxygen saturation in arterial blood. IEEE Trans. Instrum. Meas. 58(5), 1699–1705 (2009)

    Article  Google Scholar 

  19. Rajesh, P.V., et al.: 22.4 A 172uW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data. 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, pp. 386–387 (2016)

    Google Scholar 

  20. Sharma, A. et al.: Multi-modal smart bio-sensing SoC platform with >80dB SNR 35μA PPG RX chain. 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, pp. 1–2 (2016)

    Google Scholar 

  21. Winokur, E.S., O'Dwyer, T., Sodini, C.G.: A low-power, dual-wavelength Photoplethysmogram (PPG) SoC with static and time-varying interferer removal. IEEE Trans. Biomed. Circuits Syst. 9(4), 581–589 (2015)

    Article  Google Scholar 

  22. TI AFE4404 datasheet

    Google Scholar 

  23. ADI ADPD103 datasheet

    Google Scholar 

  24. Yazicioglu, R.F., et al.: 200 μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE ISSCC Digest of Technical Papers, pp. 164–165 (2008)

    Google Scholar 

  25. Xu, J., Yazicioglu, R.F., Harpe, P., Makinwa, K.A.A., Van Hoof, C.: A 160 μW 8-channel active electrode system for EEG monitoring. IEEE ISSCC Digest of Technical Papers, pp. 300–301 (2011)

    Google Scholar 

  26. Sackinger, D., Guggenbuhl, W.: A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid State Circuits. 22(2), 287–294 (1987)

    Article  Google Scholar 

  27. Alzaher, H., Ismail, M.: A CMOS fully balanced differential difference amplifier and its applications. IEEE Trans. Circuits Syst. II, Analog Digi. Signal Process. 48(6), 614–619 (2001)

    Article  Google Scholar 

  28. Rabii, S., Wooley, B.A.: A 1.8-V digital-audio sigma-delta modulator in 0.8-μm CMOS. IEEE J. Solid State Circuits. 32(6), 783–796 (1997)

    Article  Google Scholar 

  29. Sebastiano, F., van Veldhoven, R.H.M.: A 0.1-mm2 3-channel area-optimized ADC in 0.16-um CMOS with 20-kHz BW and 86-dB DR. 2013 Proceedings of the ESSCIRC (ESSCIRC)

    Google Scholar 

  30. Harpe, P., Cantatore, E., van Roermund, A.: An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR. ISSCC Dig. Tech. Papers. 194–195 (2014)

    Google Scholar 

  31. Shu, Y., Kuo, L., Lo, T.: 27.2 an oversampling SAR ADC with DAC mismatch error shaping achieving 105dB SFDR and 101dB SNDR over 1kHz BW in 55nm CMOS. pp. 458–459

    Google Scholar 

  32. Markus, J., Silva, J., Temes, G.C.: Theory and applications of incremental delta sigma converters. IEEE Trans. Circuits Syst. I. 51(4), 678–690 (2004)

    Article  Google Scholar 

  33. Quiquempoix, V., Deval, P., Barreto, A., Bellini, G., Markus, J., Silva, J., Temes, G.C.: A low-power 22-bit incremental ADC. IEEE J. Solid State Circuits. 41(7), 1562–1571 (2006)

    Article  Google Scholar 

  34. Agnes, A., Bonizzoni, E., Maloberti, F.: High-resolution multi-bit second-order incremental converter with 1.5- V residual offset and 94-dB SFDR. Analog Integr. Circ. Sig. Process. 72(3), 531–539 (2011)

    Article  Google Scholar 

  35. Rombouts, P., De Wilde, W., Weyten, L.: A 13.5-b 1.2-V micropower extended counting A/D converter. IEEE J. Solid State Circuits. 36(2), 176–183 (2001)

    Article  Google Scholar 

  36. Agah, A., Vleugels, K., Griffin, P.B., Ronaghi, M., Plummer, J.D., Wooley, B.A.: A high-resolution low-power incremental ADC with extended range for biosensor arrays. IEEE J. Solid State Circuits. 45(6), 1099–1110 (2010)

    Article  Google Scholar 

  37. Chae, Y., Souri, K., Makinwa, K.: A 6.3 μW 20b incremental zoom-ADC with 6ppm INL and 1 μV offset. IEEE ISSCC Dig. Tech. Papers, pp. 276–277 (2013)

    Google Scholar 

  38. Kim, H., et al.: A configurable and low-power mixed signal SoC for portable ECG monitoring applications. IEEE Trans. Biomed. Circuits Syst. 8(2), 257–267 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Van Helleputte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Van Helleputte, N. et al. (2018). Advances in Biomedical Sensor Systems for Wearable Health. In: Harpe, P., Makinwa, K., Baschirotto, A. (eds) Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design. Springer, Cham. https://doi.org/10.1007/978-3-319-61285-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61285-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61284-3

  • Online ISBN: 978-3-319-61285-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics