Skip to main content

Saliency-Based Image Compression Using Walsh–Hadamard Transform (WHT)

  • Chapter
  • First Online:
Biologically Rationalized Computing Techniques For Image Processing Applications

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 25))

Abstract

Owing to the development of multimedia technology, it is mandatory to perform image compression, while transferring an image from one end to another. The proposed method directly highlights the salient region in WHT domain, which results in the saliency map with lesser computation. The WHT-based saliency map is directly used to guide the image compression. Initially, the important and less important regions are identified using WHT-based visual saliency model. It significantly reduces the entropy and also reserves perceptual fidelity. The main aim of the proposed method is to produce the high-quality compressed images with lesser computational effort and thereby achieving high compression ratio. Due to the simplicity and high speed of WHT, the proposed visual saliency-based image compression method is producing reliable results, in terms of peak signal-to-noise ratio (PSNR), compression ratio, and structural similarity (SSIM), compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo C, Zhang L (2010) A novel multi resolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19, 185–198

    Google Scholar 

  2. Arya R, Singh N, Agrawal RK (2015) A novel hybrid approach for salient object detection using local and global saliency in frequency domain. Multimed Tools Appl. doi:10.1007/s11042-015-2750-y

  3. Imamoglu N, Lin WS, Fang YM (2013) A saliency detection model using low-level features based on wavelet transform. IEEE Trans Multimedia 15:96–105

    Article  Google Scholar 

  4. Lin RJ, Lin WS (2014) Computational visual saliency model based on statistics and machine learning. J Vision 14(9), 1–18

    Google Scholar 

  5. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20:1254–1259

    Article  Google Scholar 

  6. Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: ACM International conference on multimedia, pp 374–381, Berkeley (2003)

    Google Scholar 

  7. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. Neural Inf Process Syst 545–552

    Google Scholar 

  8. Goferman S, Zelnik Manor L, Tal A Context-aware saliency detection. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2376–2383

    Google Scholar 

  9. Achanta R, Hemami S, Estrada F, Susstrunk (2009) Frequency-tuned salient region detection. IEEE conference on computer vision and pattern recognition, pp 1597–1604

    Google Scholar 

  10. Cheng MM, Zhang GX, Mitra NJ, Huang X, Hu SM (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  11. Perazzi F, Krahenbuhl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. In IEEE conference on computer vision and pattern recognition (CVPR), pp 733–740

    Google Scholar 

  12. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8

    Google Scholar 

  13. Li J, Levine MD, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35:996–1010

    Article  Google Scholar 

  14. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: IEEE conference on computer vision and pattern recognition (CVPR), pp. 1–8

    Google Scholar 

  15. Merry RJE (2005) Wavelet theory and application-a literature study. Eindhoven University of Technology, The Netherlands

    Google Scholar 

  16. Li ZQ, Fang T, Huo H (2010) A saliency model based on wavelet transform and visual attention. Sci China Inf Sci 53(4):738–751

    Article  Google Scholar 

  17. Tian Q, Sebe N, Lew MS, Loupias E, Huang TS (2001) Image retrieval using wavelet-based salient points. Electron Imag 10(4):835–849

    Google Scholar 

  18. Candes E, Donoho D (2004) New tight frames of curvelets and optimal representations of objects with piecewise singularities. Commun Pure Appl Math 57:219–266

    Article  MathSciNet  MATH  Google Scholar 

  19. Bao L, Lu J, Li Y, Shi Y (2014) A saliency detection model using shearlet transform. Multimed Tools Appl. doi:10.1007/s11042-014-2043-x(2014)

  20. Yu Y, Yang J (2016) Visual saliency using binary spectrum of Walsh–Hadamard transform and its applications to ship detection in multispectral imagery. Neural Process Lett. doi:10.1007/s11063-016-9507-0

  21. Guo C, Zhang L (2010) A novel multi resolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–198

    Google Scholar 

  22. Hadizadeh H, Bajic I (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33

    Google Scholar 

  23. Barua S, Mitra K, Veeraraghavan A (2015) Saliency guided Wavelet compression for low-bitrate Image and Video coding. In: IEEE global conference on signal and information processing (2015)

    Google Scholar 

  24. Ouerhani N, Bracamonte J, Hugli H, Ansorge M, Pellandini F (2001) Adaptive color image compression based on visual attention. International conference on image analysis and processing, pp 26–28

    Google Scholar 

  25. Li Z, Qin S, Itti L (2011) Visual attention guided bit allocation in video compression. Image Vision Comp 29(1):1–14

    Google Scholar 

  26. Hadizadeh H (2013) visual saliency in video compression and transmission. Thesis dissertation (2013)

    Google Scholar 

  27. Ho-Phuoc T, Dupret A, Alacoque L (2012) Saliency-based data compression for image sensors. Sensors, IEEE

    Google Scholar 

  28. Zundy F, Pritch Y, Sorkine-Hornung A, Mangold S, Gross T (2013) Content-aware compression using saliency-driven image retargeting. In: 20th IEEE international conference on image processing (ICIP) (2013)

    Google Scholar 

  29. Tu Q, Mena A, Jiang Z, Ye F, Xu J (2015) Video saliency detection incorporating temporal information in compressed domain. Signal Process: Image Commun 38, 32–44

    Google Scholar 

  30. Yu SX, Lisin DA (2009) Image compression based on visual saliency at individual scales. In International symposium on visual computing, USA

    Google Scholar 

  31. Dhavale N, Itti L (2003) Saliency-based multi-foveated MPEG compression. In: Proceedings of signal processing and its applications pp 229–232 (2003)

    Google Scholar 

  32. Duan L, Ke C (2012) A natural image compression approach based on independent component analysis and visual saliency detection. Adv Sci Lett 5, 1–4

    Google Scholar 

  33. Lakshmi Priya GG, Domnic S (2014) Walsh-Hadamard transform kernel-based feature vector for shot boundary detection. IEEE Trans Image Process 23(12):5187–5197

    Article  MathSciNet  Google Scholar 

  34. Petrov Y, Li Z (2003) Local correlations, information redundancy, and sufficient pixel depth in natural images. J Opt Soc Am A 20(1):56–66

    Article  Google Scholar 

  35. Li Z, Atick JJ (1994) Toward a theory of the striate cortex. Neural Comput 6(1):127–146

    Article  Google Scholar 

  36. Luo W, Li H, Liu G, Ngan KN (2012) Global salient information maximization for saliency detection. Sig Process: Image Commun 27(3):238–248

    Google Scholar 

  37. Ma X, Xie X, Lam K-M, Zhong Y (2015) Efficient saliency analysis based on wavelet transform and entropy theory. J Vis Commun Image R 30:201–207

    Google Scholar 

  38. Acharya T, ‎Tsai PS (2005) JPEG2000 standard for image compression: concepts, algorithms and VLSI architecture. Wiley 60(2005)

    Google Scholar 

  39. Gupta R, Khanna MT, Chaudhur S (2013) Visual saliency guided video compression algorithm. Signal Process: Image Commun 28:1006–1022

    Google Scholar 

  40. Judd T, Ehinger K, Durand F, Torralba A (2009) Learning to predict where humans look. In: IEEE conference on computer vision and pattern recognition (CVPR)

    Google Scholar 

  41. Murray N, Vanrell M, Otazu X, Parraga CA (2011) Saliency estimation using a non-parametric low-level vision model. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 433–440

    Google Scholar 

  42. Gonzalez RC, Woods RE, Eddins SL (2004) Digital signal procesing using Matlab. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  43. Wallace GK (1991) The JPEG still picture compression standard. Commun ACM 34:31–44

    Article  Google Scholar 

  44. Chowdhury MMH, Khatun A (2012) Image compression using discrete wavelet transform. Int J Comput Sci 9(4)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Diana Andrushia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Diana Andrushia, A., Thangarjan, R. (2018). Saliency-Based Image Compression Using Walsh–Hadamard Transform (WHT). In: Hemanth, J., Balas , V. (eds) Biologically Rationalized Computing Techniques For Image Processing Applications. Lecture Notes in Computational Vision and Biomechanics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-61316-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61316-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61315-4

  • Online ISBN: 978-3-319-61316-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics