Skip to main content

Modelling of Flexible Cable-Driven Parallel Robots Using a Rayleigh-Ritz Approach

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 53))

Abstract

This paper investigates the use of the Rayleigh-Ritz method to model single degree-of-freedom flexible cable-driven parallel robots (CDPRs) using a set of time-dependent basis functions to discretize cables of varying length. An energy-based model simplification is proposed to further facilitate reduction in the computational load when performing numerical simulations involving the proposed model. Open-loop system responses are used to compare the effect of the energy-based model simplification. Frequency responses are used to compare the influence of the number of basis functions used and to provide a comparison to a lumped-mass model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsenault, M.: Stiffness analysis of a planar 2-DoF cable-suspended mechanism while considering cable mass. In: Cable-Driven Parallel Robots, pp. 405–421. Springer, Berlin (2013)

    Google Scholar 

  2. Caverly, R.J., Forbes, J.R.: Dynamic modeling and noncollocated control of a flexible planar cable-driven manipulator. IEEE Trans. Robot. 30(6), 1386–1397 (2014)

    Article  Google Scholar 

  3. Caverly, R.J., Forbes, J.R., Mohammadshahi, D.: Dynamic modeling and passivity-based control of a single degree of freedom cable-actuated system. IEEE Trans. Control Syst. Technol. 23(3), 898–909 (2015)

    Article  Google Scholar 

  4. Damaren, C.J.: Approximate inverse dynamics and passive feedback for flexible manipulators with large payloads. IEEE Trans. Robot. Autom. 12(1), 131–138 (1996)

    Article  Google Scholar 

  5. Damaren, C.J.: Modal properties and control system design for two-link flexible manipulators. Int. J. Robot. Res. 17(6), 667–678 (1998)

    Article  Google Scholar 

  6. Damaren, C.J.: An adaptive controller for two cooperating flexible manipulators. J. Robot. Syst. 20(1), 15–21 (2003)

    Article  MATH  Google Scholar 

  7. Du, J., Ding, W., Bao, H.: Cable vibration analysis for large workspace cable-driven parallel manipulators. In: Cable-Driven Parallel Robots, pp. 437–449. Springer, Berlin (2013)

    Google Scholar 

  8. Lambert, C., Nahon, M., Chalmers, D.: Implementation of an aerostat positioning system with cable control. IEEE-ASME Trans. Mechatron. 12(1), 32–40 (2007)

    Article  Google Scholar 

  9. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlin. Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  10. Li, H.: On the static stiffness of incompletely restrained cable-driven robot. In: Cable-Driven Parallel Robots, pp. 55–69. Springer International Publishing (2015)

    Google Scholar 

  11. Miermeister, P., Lächele, M., Boss, R., Masone, C., Schenk, C., Tesch, J., Kerger, M., Teufel, H., Pott, A., Bülthoff, H.H.: The CableRobot simulator large scale motion platform based on cable robot technology. In: IEEE International Conference on Intelligent Robots, pp. 3024–3029 (2016)

    Google Scholar 

  12. Sanderson, C., Curtin, R.: Armadillo: a template-based C++ library for linear algebra. J. Open Source Softw. 1(2), 26–32 (2016)

    Article  Google Scholar 

  13. Walsh, A., Forbes, J.R.: Modeling and control of a wind energy harvesting kite with flexible cables. In: Proceedings of the American Control Conference, pp. 2383–2388 (2015)

    Google Scholar 

  14. Wang, D., Vidyasagar, M.: Passive control of a stiff flexible link. Int. J. Robot. Res. 11(6), 572–578 (1992)

    Article  Google Scholar 

  15. Zhang, Y., Agrawal, S.K., Hagedorn, P.: Longitudinal vibration modeling and control of a flexible transporter system with arbitrarily varying cable lengths. J. Vib. Control 11(3), 431–456 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh Atul Godbole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Godbole, H.A., Caverly, R.J., Forbes, J.R. (2018). Modelling of Flexible Cable-Driven Parallel Robots Using a Rayleigh-Ritz Approach. In: Gosselin, C., Cardou, P., Bruckmann, T., Pott, A. (eds) Cable-Driven Parallel Robots. Mechanisms and Machine Science, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-61431-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61431-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61430-4

  • Online ISBN: 978-3-319-61431-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics