Skip to main content

Halogens in the Earth’s Mantle: What We Know and What We Don’t

  • Chapter
  • First Online:
The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes

Part of the book series: Springer Geochemistry ((SPRIGEO))

Abstract

The Earth’s mantle is known to contain significant amounts of volatile elements, such as hydrogen (H), carbon (C) and halogens. In the past decades our knowledge about the storage of H and C in mantle minerals, and their behavior during melting of mantle peridotite has improved considerably. In contrast, the behavior of other volatile elements, such as the halogens (Cl, F, I or Br) in the mantle is not so well constrained. Here we review the available experimental, analytical and theoretical data on halogen storage in mantle rocks and minerals, halogen concentrations in nominally halogen free minerals, and halogen partitioning during magmatic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263:1–18

    Article  Google Scholar 

  • Aoki K, Fujino K, Akaogi M (1976) Titanochondrodite and titanoclinohumite derived from upper mantle in Buell Park kimberlite, Arizona, USA. Contrib Mineral Petrol 56:243–253

    Article  Google Scholar 

  • Aoki K, Ishiwaka K, Kanisawa S (1981) Fluorine geochemistry of basaltic rocks from continental and oceanic regions and petrogenetic application. Contrib Mineral Petrol 76:53–59

    Article  Google Scholar 

  • Balcone-Boissard H, Michel A, Villemant B (2009) Simultaneous determination of Fluorine, Chlorine, Bromine and Iodine in six geochemical reference materials using pyrohydrolysis, ion chromatography and inductively coupled plasma-mass spectrometry. Geostand Geoanal Res 33:477–485

    Article  Google Scholar 

  • Barnes JD, Manning C, Scambelluri Selverstone J (2018) The behavior of halogens during subduction-zone processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 545–590

    Google Scholar 

  • Bell DR, Rossman GR (1992) Water in Earth’s mantle—the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Bernini D, Wiedenbeck M, Dolejs D, Keppler H (2013) Partitioning of halogens between mantle minerals and aqueous fluids: implications for the fluid flow regime in subduction zones. Contrib Mineral Petrol 165:117–128

    Article  Google Scholar 

  • Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337:1–9

    Article  Google Scholar 

  • Boettcher AL, O’Neil JR (1980) Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas—evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280:594–621

    Google Scholar 

  • Bolfan-Casanova N (2005) Water in the Earth’s mantle. Mineral Mag 69:229–257

    Article  Google Scholar 

  • Bonadiman C, Nazzareni S, Coltorti M, Comodi P, Giuli G, Faccini B (2014) Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica. Contrib Mineral Petrol 167:1–17

    Article  Google Scholar 

  • Bouvier AS, Metrich N, Deloule E (2008) Slab-derived fluids in the magma sources of St. Vincent (Lesser Antilles arc): volatile and light element imprints. J Petrol 49:1427–1448

    Article  Google Scholar 

  • Bouvier AS, Metrich N, Deloule E (2010) Light elements, volatiles, and stable isotopes in basaltic melt inclusions from Grenada, Lesser Antilles: inferences for magma genesis. Geochem Geophyss Geosyst 11:Q09004

    Google Scholar 

  • Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. In: VM Goldschmidt Conference, Köln, Germany, vol 71. Geochim Cosmochim Acta: A124

    Google Scholar 

  • Bu X, Wang T, Hall G (2003) Determination of halogens in organic compounds by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). J Anal At Spectrom 18:1443–1451

    Article  Google Scholar 

  • Caruba R, Baumer A, Ganteaume M, Iacconi P (1985) An experimental-study of hydroxyl-groups and water in synthetic and natural zircons—a model of the metamict state. Am Mineral 70:1224–1231

    Google Scholar 

  • Chu L, Enggist A, Luth RW (2011) Effect of KCl on melting in the Mg2SiO4-MgSiO3-H2O system at 5 GPa. Contrib Mineral Petrol 162:565–571

    Article  Google Scholar 

  • Churikova T, Woerner G, Mironov N, Kronz A (2007) Volatile (S, Cl and F) and fluid mobile trace element compositions in melt inclusions: implications for variable fluid sources across the Kamchatka arc. Contrib Mineral Petrol 154:217–239

    Article  Google Scholar 

  • Crepisson C, Blanchard M, Bureau H, Sanloup C, Withers AC, Khodja H, Surble S, Raepsaet C, Beneut K, Leroy C, Giura P, Balan E (2014) Clumped fluoride-hydroxyl defects in forsterite: implications for the upper-mantle. Earth Planet Sci Lett 390:287–295

    Article  Google Scholar 

  • Dalou C, Koga KT, Shimizu N, Boulon J, Devidal J-L (2012) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Mineral Petrol 163:591–609

    Article  Google Scholar 

  • Dalou C, Koga KT, Le Voyer M, Shimizu N (2014) Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas. Prog Earth Planet Sci 1:26

    Article  Google Scholar 

  • Debret B, Koga KT, Nicollet C, Andreani M, Schwartz S (2014) F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova 26:96–101

    Article  Google Scholar 

  • Deruelle B, Dreibus G, Jambon A (1992) Iodine abundances in oceanic basalts—implications for earth dynamics. Earth Planet Sci Lett 108:217–227

    Article  Google Scholar 

  • Dolejs D, Zajacz Z (2018) Halogens in silicic magmas and their hydrothermal systems. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 431–543

    Google Scholar 

  • Douce AEP, Roden MF, Chaumba J, Fleisher C, Yogodzinski G (2011) Compositional variability of terrestrial mantle apatites, thermodynamic modeling of apatite volatile contents, and the halogen and water budgets of planetary mantles. Chem Geol 288:14–31

    Google Scholar 

  • Dreibus C, Spettel B, Wänke H (1979) Halogens in meteorites and their primordial abundances. In: Ahrens LH (ed) Origin and distribution of the elements, vol 34. Pergamon, Oxford, pp 33–38

    Google Scholar 

  • Drury MR (1991) Hydration-induced climb dissociation of dislocations in naturally deformed mantle olivine. Phys Chem Mineral 18:106–116

    Article  Google Scholar 

  • Edgar AD, Arima M (1985) Fluorine and chlorine contents of phlogopites crystallized from ultrapotassic rock compositions in high-pressure experiments—implication for halogen reservoirs in source regions. Am Mineral 70:529–536

    Google Scholar 

  • Edgar AD, Pizzolato LA (1995) An experimental-study of partitioning of fluorine between K-richterite, apatite, phlogopite, and melt at 20 kbar. Contrib Mineral Petrol 121:247–257

    Article  Google Scholar 

  • Edgar AD, Lloyd FE, Vukadinovic D (1994) The role of fluorine in the evolution of ultrapotassic magmas. Mineral Petrol 51:173–193

    Article  Google Scholar 

  • Edgar AD, Pizzolato LA, Sheen J (1996) Fluorine in igneous rocks and minerals with emphasis on ultrapotassic mafic and ultramafic magmas and their mantle source regions. Mineral Mag 60:243–257

    Article  Google Scholar 

  • Elburg M, Kamenetsky VS, Nikogosian I, Foden J, Sobolev AV (2006) Coexisting high- and low-calcium melts identified by mineral and melt inclusion studies of a subduction-influenced syncollisional magma from South Sulawesi, Indonesia. J Petrol 47:2433–2462

    Article  Google Scholar 

  • Evans B, Trommsdorff V (1983) Fluorine hydroxyl titanium clinohumite in alpine recrystallized garnet peridotite: compositional controls and petrologic significance. Am J Sci 283:355–369

    Google Scholar 

  • Fabbrizio A, Stalder R, Hametner K, Günther D (2013a) Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions. Geochim Cosmochim Acta 121:384–700

    Google Scholar 

  • Fabbrizio A, Stalder R, Hametner K, Günther D, Marquardt K (2013b) Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300 degrees C. Contrib Mineral Petrol 166:639–653

    Article  Google Scholar 

  • Filiberto J, Treiman AH (2009) The effect of chlorine on the liquidus of basalt: first results and implications for basalt genesis on Mars and Earth. Chem Geol 263:60–68

    Article  Google Scholar 

  • Filiberto J, Wood J, Dasgupta R, Shimizu N, Le L, Treiman A (2012) Effect of fluorine on near-liquidus phase equilibria of an Fe-Mg rich basalt. Chem Geol 312–313:118–126

    Article  Google Scholar 

  • Filiberto J, Dasgupta R, Gross J, Treiman AH (2014) Effect of chlorine on near-liquidus phase equilibria of an Fe–Mg-rich tholeiitic basalt. Contrib Mineral Petrol 168:1027–1034

    Article  Google Scholar 

  • Fockenberg T (1995) Synthesis and chemical variability of Mg-staurolite in the system MgO-Al2O3-SiO2-H2O as a function of water pressure. Eur J Mineral 7:1373–1380

    Google Scholar 

  • Foley S (1991) High-pressure stability of the fluor-endmembers and hydroxy-endmembers of pargasite and K-richterite. Geochim Cosmochim Acta 55:2689–2694

    Article  Google Scholar 

  • Frezzotti M-L, Ferrando S (2018) The role of halogens in the lithospheric mantle. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 805–845

    Google Scholar 

  • Fumagalli P, Klemme S (2015) Mineralogy of the Earth: phase transitions and mineralogy of the upper mantle. In: Schubert G (ed) Treatise on geophysics, vol 2. Elsevier, Oxford, pp 7–31

    Chapter  Google Scholar 

  • Grützner T, Kohn SC, Bromiley DW, Rohrbach A, Berndt J, Klemme S (2017) The storage capacity of fluorine in olivine and pyroxene under upper mantle conditions. Geochim Cosmochim Acta 208:160–170

    Google Scholar 

  • Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Let 248:715–734

    Article  Google Scholar 

  • Hauri EH, Weinreich T, Saal AE, Rutherford MC, Van Orman JA (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213–215

    Article  Google Scholar 

  • Hazen RM, Yang H, Prewitt CT, Gasparik T (1997) Crystal chemistry of superfluorous phase B (Mg10Si3O14F4): implications for the role of fluorine in the mantle. Am Mineral 82:647–650

    Article  Google Scholar 

  • Hermann J, Fitz Gerald JD, Malaspina N, Berry AJ, Scambelluri M (2007) OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contrib Mineral Petrol 153:417–428

    Article  Google Scholar 

  • Hervig RL, Bell DR (2005) Fluorine and hydrogen in mantle megacrysts. AGU Fall Meeting, pp V41A-1426

    Google Scholar 

  • Hinton RW, Harte B, Witt-Eickschen G (1995) Ion probe measurements of national-institute-of-standards-and-technology standard reference material SRM-610 glass, trace-elements. Analyst 120:1315–1319

    Article  Google Scholar 

  • Hirth G, Kohlstedt DL (1996) Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet Sci Lett 144:93–108

    Article  Google Scholar 

  • Hoskin PWO (1999) SIMS determination of µg/g-level fluorine in geological samples and its concentration in NIST SRM 610. Geostand Newsl 23:69–76

    Article  Google Scholar 

  • Ionov DA, Griffin WL, Oreilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Irving AJ, Frey FA (1984) Trace-element abundances in megacrysts and their host basalts—constraints on partition-coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221

    Article  Google Scholar 

  • Jambon A, Deruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117

    Article  Google Scholar 

  • Joachim B, Pawley A, Lyon IC, Marquardt K, Henkel T, Clay PL, Ruzie L, Burgess R, Ballentine CJ (2015) Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chem Geol 416:65–78

    Google Scholar 

  • John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76

    Article  Google Scholar 

  • Johnson LH, Burgess R, Turner G, Harris JH, Milledge HJ (2000) Noble gas and halogen geochemistry of mantle fluids in diamond: comparison of African and Canadian stones. Geochim Cosmochim Acta 64:717–732

    Article  Google Scholar 

  • Karato SI, Paterson MS, Fitz Gerald JD (1986) Rheology of synthetic olivine aggregates—influence of grain-size and water. J Geophys Res-Solid Earth Planets 91:8151–8176

    Article  Google Scholar 

  • Kendrick MA (2012) High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem Geol 292:116–126

    Article  Google Scholar 

  • Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012a) Halogen systematics (Cl, Br, I) in Mid-Ocean Ridge Basalts: a Macquarie Island case study. Geochim Cosmochim Acta 81:82–93

    Article  Google Scholar 

  • Kendrick MA, Woodhead JD, Kamenetsky VS (2012b) Tracking halogens through the subduction cycle. Geology 40:1075–1078

    Article  Google Scholar 

  • Kendrick MA, Arculus R, Burnard P, Honda M (2013) Quantifying brine assimilation by submarine magmas: examples from the Galapagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165

    Article  Google Scholar 

  • Kendrick MA, Arculus RJ, Danyushevsky LV, Kamenetsky VS, Woodhead JD, Honda M (2014) Subduction-related halogens (Cl, Br and I) and H2O in magmatic glasses from Southwest Pacific Backarc Basins. Earth Planet Sci Lett 400:165–176

    Article  Google Scholar 

  • Keppler H, Smyth JR (2006) Water in nominally anhydrous minerals. In: Rosso JJ (ed) Reviews in mineralogy, vol 62. Mineralogical Society of America, Chantilly, p 478

    Google Scholar 

  • Kitamura M, Kondoh S, Morimoto N, Miller GH, Rossman GR, Putnis A (1987) Planar OH-bearing defects in mantle olivine. Nature 328:143–145

    Article  Google Scholar 

  • Koleszar AM, Saal AE, Hauri EH, Nagle AN, Liang Y, Kurz MD (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287:442–452

    Article  Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle—an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652

    Article  Google Scholar 

  • Konzett J, Rhede D, Frost DJ (2012) The high PT stability of apatite and Cl partitioning between apatite and hydrous potassic phases in peridotite: an experimental study to 19 GPa with implications for the transport of P, Cl and K in the upper mantle. Contrib Mineral Petrol 163:277–296

    Article  Google Scholar 

  • Kovalenko VI, Naumov VB, Girnis AV, Dorofeeva VA, Yarmolyuk VV (2007a) Average compositions of magmas and mantle sources of mid-ocean ridges and intraplate oceanic and continental settings estimated from the data on melt inclusions and quenched glasses of basalts. Petrology 15:335–368

    Article  Google Scholar 

  • Kovalenko VI, Naumov VB, Girnis AV, Dorofeeva VA, Yarmolyuk VV (2007b) Volatiles in basaltic magmas of ocean islands and their mantle sources: II. Estimation of contents in mantle reservoirs. Geochem Int 45:313–326

    Article  Google Scholar 

  • le Roux PJ, Shirey SB, Hauri EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8-10 degrees N and 12-14 degrees N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231

    Article  Google Scholar 

  • Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595

    Article  Google Scholar 

  • Le Voyer M, Asimow PD, Mosenfelder JL, Guan Y, Wallace PJ, Schiano P, Stolper EM, Eiler JM (2014) Zonation of H2O and F concentrations around melt inclusions in olivines. J Petrol 55:685–707

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • Luth RW (1988) Effects of F on phase equilibria and liquid structure in the system NaAlSiO4-CaMgSi2O6-SiO2. Am Mineral 73:306–312

    Google Scholar 

  • Luth RW (2013) Volatiles in Earth’s mantle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 319–361

    Google Scholar 

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res-Solid Earth 112:B03212

    Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at I kb. Contrib Mineral Petrol 76:206–215

    Article  Google Scholar 

  • McDonough WF (2004) Compositional model for the Earth’s core. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 547–568

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • McGetchin T, Silver LT, Chodos AA (1970) Titanoclinohumite—a possible mineralogical site for water in upper mantle. J Geophys Res 75:255–259

    Google Scholar 

  • Metrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes, vol 69. American Mineralogical Society, Washington, pp 363–402

    Google Scholar 

  • Mosenfelder JL, Le Voyer M, Rossman GR, Guan Y, Bell DR, Asimow PD, Eiler JM (2011) Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am Mineral 96:1725–1741

    Article  Google Scholar 

  • Mosenfelder JL, Rossman GR (2013a) Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene. Am Mineral 98:1026–1041

    Article  Google Scholar 

  • Mosenfelder JL, Rossman GR (2013b) Analysis of hydrogen and fluorine in pyroxenes: II. Clinopyroxene. Am Mineral 98:1042–1054

    Article  Google Scholar 

  • Newsom HE (1995) Composition of the solar system, planets, meteorites, and major terrestrial reservoirs. In: Ahrens TJ (ed) Global earth physics. A handbook of physical constants. American Geophysical Union, Washington, DC, pp 159–189

    Google Scholar 

  • O’Leary JA, Gaetani GA, Hauri EH (2010) The effect of tetrahedral Al3 + on the partitioning of water between clinopyroxene and silicate melt. Earth Planet Sci Lett 297:111–120

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2000) Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle. Lithos 53:217–232

    Article  Google Scholar 

  • Orberger B, Metrich N, Mosbah M, Mevel C, Fouquet Y (1999) Nuclear microprobe analysis of serpentine from the mid-Atlantic ridge. Nucl Instrum Methods Phys Res B 158:575–581

    Article  Google Scholar 

  • Ottolini LP, Le Fevre B (2007) SIMS analysis of chlorine in metasomatised upper-mantle rocks. Microchim Acta 161:329–339

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2014) Cosmochemical estimates of mantle composition. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–39

    Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69

    Article  Google Scholar 

  • Pyle DM, Mather TA (2009) Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem Geol 263:110–121

    Article  Google Scholar 

  • Rose-Koga EF, Koga KT, Schiano P, Le Voyer M, Shimizu N, Whitehouse MJ, Clocchiatti R (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279

    Article  Google Scholar 

  • Rose-Koga EF, Koga KT, Hamada M, Helouis T, Whitehouse MJ, Shimizu N (2014) Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planets Space 66:81

    Google Scholar 

  • Rosenberg PE, Foit FF (1977) Fe2+-F avoidance in silicate. Geochim Cosmochim Acta 41:345–346

    Article  Google Scholar 

  • Rosenthal A, Hauri EH, Hirschmanna MM (2015) Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet Sci Lett 412:77–87

    Article  Google Scholar 

  • Ruzie L, Moreira M, Crispi O (2012) Noble gas isotopes in hydrothermal volcanic fluids of La Soufriere volcano, Guadeloupe, Lesser Antilles arc. Chem Geol 304:158–165

    Article  Google Scholar 

  • Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:Q05004

    Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613

    Article  Google Scholar 

  • Schilling JG, Bergeron MB, Evans R (1980) Halogens in the mantle beneath the north-atlantic. Philos Trans Roy Soc A 297:147–178

    Google Scholar 

  • Sharp ZD, Draper DS (2013) The chlorine abundance of Earth: implications for a habitable planet. Earth Planet Sci Lett 369:71–77

    Article  Google Scholar 

  • Smith JV (1981) Halogen and phosphorus storage in the Earth. Nature 289:762–765

    Article  Google Scholar 

  • Smith JV, Delaney JS, Hervig RL, Dawson JB (1981) Storage of F and Cl in the upper mantle—geochemical implications. Lithos 14:133–147

    Article  Google Scholar 

  • Stalder R, Ulmer P (2001) Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone. Contrib Mineral Petrol 140:670–679

    Article  Google Scholar 

  • Stalder R, Kronz A, Simon K (2008) Hydrogen incorporation in enstatite in the system MgO-SiO2-H2O-NaCl. Contrib Mineral Petrol 156:653–659

    Article  Google Scholar 

  • Staudigel H, Schreyer W (1977) Upper thermal-stability of clinochlore, Mg5AlSi3O10(OH)8, at 10-35 kb pH2O. Contrib Mineral Petrol 61:187–198

    Article  Google Scholar 

  • Stecher O (1998) Fluorine geochemistry in volcanic rock series: examples from Iceland and Jan Mayen. Geochim Cosmochim Acta 62:3117–3130

    Article  Google Scholar 

  • Straub SM, Layne GD (2003a) Decoupling of fluids and fluid-mobile elements during shallow subduction: evidence from halogen-rich andesite melt inclusions from the Izu arc volcanic front. Geochem Geophys Geosyst 4:9003

    Google Scholar 

  • Straub SM, Layne GD (2003b) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Vigouroux N, Wallace PJ, Williams-Jones G, Kelley K, Kent AJR, Williams-Jones AE (2012) The sources of volatile and fluid-mobile elements in the Sunda arc: a melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia. Geochem Geophy Geosyst 13:Q090

    Google Scholar 

  • Visser D (1993) Fluorine-bearing hydrogarnets from Blengsvatn, Bamble sector, South Norway. Mineral Petrol 47:209–218

    Article  Google Scholar 

  • Volfinger M, Robert JL, Vielzeuf D, Neiva AMR (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim Cosmochim Acta 49:37–48

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Article  Google Scholar 

  • Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430

    Google Scholar 

  • Workman RK, Hauri E, Hart SR, Wang J, Blusztajn J (2006) Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth Planet Sci Lett 241:932–951

    Article  Google Scholar 

  • Wu J, Koga KT (2013) Fluorine partitioning between hydrous minerals and aqueous fluid at 1 GPa and 770–947 degrees C: a new constraint on slab flux. Geochim Cosmochim Acta 119:77–92

    Article  Google Scholar 

  • Wyllie PJ, Tuttle OF (1961) Experimental investigation of silicate liquids containing two volatile components Part II. The effects of NH3 and HF in addition to H2O on the melting temperatures of albite and granite. Am J Sci 259:128–143

    Google Scholar 

  • Wysoczanski RJ, Wright IC, Gamble JA, Hauri EH, Luhr JF, Eggins SM, Handler MR (2006) Volatile contents of Kermadec Arc-Havre Trough pillow glasses: fingerprinting slab-derived aqueous fluids in the mantle sources of arc and back-arc lavas. J Volcanol Geotherm Res 152:51–73

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank T. John for many helpful and inspiring discussions on an early version of the manuscript. Our thanks also go to four reviewers for constructive and helpful comments and editors D. E. Harlov and L. Aranovich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Stalder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klemme, S., Stalder, R. (2018). Halogens in the Earth’s Mantle: What We Know and What We Don’t. In: Harlov, D., Aranovich, L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-61667-4_14

Download citation

Publish with us

Policies and ethics