Skip to main content

The Impact of the Intestinal Microbiota in Therapeutic Responses Against Cancer

  • Chapter
  • First Online:
Oncoimmunology

Abstract

In the last years, there is a growing awareness regarding the role of the microbiota in various chronic inflammatory disorders including cancers. The intestinal microbiome is not only regulating the spontaneous course of malignancies of the digestive tract but also acts at a distant site on extraintestinal neoplasia, to play a beneficial or a detrimental role, depending on the context. By providing pathogen and damage-associated molecular patterns and by activating local and distant antigen-presenting cells, our commensals modulate not only the gut, the systemic inflammatory, and immune tonus but also the tumor microenvironment and anticancer-specific adaptive immune responses. Additionally, therapeutic interventions alter the delicate balance between the epithelium, the microbial community, and the lamina propria immunity, influencing the clinical outcome. This chapter will focus on the impact of the intestinal composition in the bioactivity and therapeutic efficacy of distinct compounds (alkylating agents, platinum salts, radiotherapy, conditioning regimen for stem cell transplantation, immunotherapies, and immune checkpoint blockers). This era of research opens novel therapeutic avenues that aim to restore gut eubiosis for a better clinical outcome in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. de Vos WM, de Vos EA. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr Rev. 2012;70:S45–56.

    Article  PubMed  Google Scholar 

  2. Karlsson FH, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  3. Le Chatelier E, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  CAS  Google Scholar 

  4. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol. 2014;14:667–85.

    Article  CAS  PubMed  Google Scholar 

  5. Arumugam M, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cotillard A, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.

    Article  CAS  PubMed  Google Scholar 

  7. Segre JA. MICROBIOME. Microbial growth dynamics and human disease. Science. 2015;349:1058–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hornef M. Pathogens, commensal symbionts, and pathobionts: discovery and functional effects on the host. ILAR J. 2015;56:159–62.

    Article  CAS  PubMed  Google Scholar 

  9. Ergin A, et al. Impaired peripheral Th1 CD4+ T cell response to Escherichia coli proteins in patients with Crohn’s disease and ankylosing spondylitis. J Clin Immunol. 2011;31:998–1009.

    Article  CAS  PubMed  Google Scholar 

  10. Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut. 1996;38:365–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palm NW, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhee K-J, Sethupathi P, Driks A, Lanning DK, Knight KL. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol. 2004;172:1118–24.

    Article  CAS  PubMed  Google Scholar 

  13. Ivanov II, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med. 2014;6:220ra11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Atarashi K, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–41.

    Article  CAS  PubMed  Google Scholar 

  16. Atarashi K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    Article  CAS  PubMed  Google Scholar 

  17. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dejea CM, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. 2014;111:18321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zackular JP, Rogers MAM, Ruffin MT, Schloss PD. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res Phila. 2014;7:1112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeller G, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zitvogel L, et al. Cancer and the gut microbiota: an unexpected link. Sci Transl Med. 2015;7:271ps1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Abreu MT, Peek RM. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–1546.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garrett WS. Cancer and the microbiota. Science. 2015;348:80–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gur C, et al. Binding of the Fap 2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014;12:661–72.

    Article  CAS  PubMed  Google Scholar 

  27. Bongers G, et al. Interplay of host microbiota, genetic perturbations, and inflammation promotes local development of intestinal neoplasms in mice. J Exp Med. 2014;211:457–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rutkowski MR, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27:27–40.

    Article  CAS  PubMed  Google Scholar 

  29. Rossini A, et al. Influence of antibiotic treatment on breast carcinoma development in proto-neu transgenic mice. Cancer Res. 2006;66:6219–24.

    Article  CAS  PubMed  Google Scholar 

  30. Blaser M. Antibiotic overuse: stop the killing of beneficial bacteria. Nature. 2011;476:393–4.

    Article  CAS  PubMed  Google Scholar 

  31. Tikkanen MJ, Adlercreutz H, Pulkkinen MO. Effects of antibiotics on oestrogen metabolism. Br Med J. 1973;2:369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Adlercreutz H, et al. Intestinal metabolism of estrogens. J Clin Endocrinol Metab. 1976;43:497–505.

    Article  CAS  PubMed  Google Scholar 

  33. Knekt P, et al. Does antibacterial treatment for urinary tract infection contribute to the risk of breast cancer? Br J Cancer. 2000;82:1107–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kilkkinen A, et al. Antibiotic use predicts an increased risk of cancer. Int J Cancer. 2008;123:2152–5.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang H, García Rodríguez LA, Hernández-Díaz S. Antibiotic use and the risk of lung cancer. Cancer Epidemiol Biomark Prev. 2008;17:1308–15.

    Article  CAS  Google Scholar 

  36. Tamim HM, Hajeer AH, Boivin J-F, Collet J-P. Association between antibiotic use and risk of prostate cancer. Int J Cancer. 2010;127(4):952–60. doi:10.1002/ijc.25139.

    CAS  PubMed  Google Scholar 

  37. Boursi B, Mamtani R, Haynes K, Yang Y-X. Recurrent antibiotic exposure may promote cancer formation – another step in understanding the role of the human microbiota? Eur J Cancer. 2015;51:2655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shiga K, et al. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep. 2001;8:245–8.

    CAS  PubMed  Google Scholar 

  39. Yu G, et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 2016;17:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Warren RL, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015;138:190–200.

    Article  PubMed  Google Scholar 

  42. Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci U S A. 2005;102:13254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cui M, et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med. 2017;9(4):448–61. doi:10.15252/emmm.201606932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nam Y-D, Kim HJ, Seo J-G, Kang SW, Bae J-W. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS One. 2013;8:e82659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ciorba MA, et al. Lactobacillus probiotic protects intestinal epithelium from radiation injury in a TLR-2/cyclo-oxygenase-2-dependent manner. Gut. 2012;61:829–38.

    Article  CAS  PubMed  Google Scholar 

  46. Salminen E, Elomaa I, Minkkinen J, Vapaatalo H, Salminen S. Preservation of intestinal integrity during radiotherapy using live Lactobacillus acidophilus cultures. Clin Radiol. 1988;39:435–7.

    Article  CAS  PubMed  Google Scholar 

  47. Delia P, et al. Use of probiotics for prevention of radiation-induced diarrhea. World J Gastroenterol. 2007;13:912–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chitapanarux I, et al. Randomized controlled trial of live lactobacillus acidophilus plus bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol. 2010;5:31.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang A, et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: a pilot study. PLoS One. 2015;10:e0126312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ciorba MA, Hallemeier CL, Stenson WF, Parikh PJ. Probiotics to prevent gastrointestinal toxicity from cancer therapy: an interpretive review and call to action. Curr Opin Support Palliat Care. 2015;9:157–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nejdfors P, Ekelund M, Weström BR, Willén R, Jeppsson B. Intestinal permeability in humans is increased after radiation therapy. Dis Colon Rectum. 2000;43:1582–1587.; discussion 1587–1588.

    Article  CAS  PubMed  Google Scholar 

  52. Paulos CM, et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J Clin Invest. 2007;117:2197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Espinosa-Carrasco G, et al. Systemic LPS translocation activates cross-presenting dendritic cells but is dispensable for the breakdown of CD8+ T cell peripheral tolerance in irradiated mice. PLoS One. 2015;10:e0130041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ubeda C, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120:4332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van Vliet MJ, Harmsen HJM, de Bont ESJM, Tissing WJE. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 2010;6:e1000879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Stringer AM, et al. Irinotecan-induced mucositis manifesting as diarrhoea corresponds with an amended intestinal flora and mucin profile. Int J Exp Pathol. 2009;90:489–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang J, Liu K, Qu J, Wang X. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol. 2013;714:120–4.

    Article  CAS  PubMed  Google Scholar 

  58. Sistigu A, et al. Immunomodulatory effects of cyclophosphamide and implementations for vaccine design. Semin Immunopathol. 2011;33:369–83.

    Article  CAS  PubMed  Google Scholar 

  59. Viaud S, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Daillère R, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45:931–43.

    Article  PubMed  CAS  Google Scholar 

  61. Iida N, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–70.

    Article  CAS  PubMed  Google Scholar 

  62. Gui Q-F, Lu H-F, Zhang C-X, Xu Z-R, Yang Y-H. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet Mol Res. 2015;14:5642–51.

    Article  PubMed  Google Scholar 

  63. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robert C, Mateus C. Anti-CTLA-4 monoclonal antibody: a major step in the treatment of metastatic melanoma. Med Sci. 2011;27:850–8.

    Google Scholar 

  65. Vétizou M, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sivan A, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res. 1971;45:577.

    Article  CAS  PubMed  Google Scholar 

  68. van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst. 1974;52:401–4.

    Article  PubMed  Google Scholar 

  69. Vossen JM, et al. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PLoS One. 2014;9:e105706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Taur Y, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124:1174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jenq RR, et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:1373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Holler E, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant. 2014;20:640–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Biagi E, et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT. Bone Marrow Transplant. 2015;50:992–8.

    Article  CAS  PubMed  Google Scholar 

  74. Simms-Waldrip TR, et al. Antibiotic-induced depletion of anti-inflammatory Clostridia is associated with the development of graft-versus-host disease in pediatric stem cell transplantation patients. Biol Blood Marrow Transplant. 2017;23(5):820–9. doi:10.1016/j.bbmt.2017.02.004.

    Article  CAS  PubMed  Google Scholar 

  75. Gerbitz A, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004;103:4365–7.

    Article  CAS  PubMed  Google Scholar 

  76. Jenq RR, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med. 2012;209:903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kakihana K, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016;128:2083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Neemann K, et al. Fecal microbiota transplantation for fulminant Clostridium difficile infection in an allogeneic stem cell transplant patient. Transpl Infect Dis. 2012;14:E161–5.

    Article  CAS  PubMed  Google Scholar 

  79. de Castro CG, Ganc AJ, Ganc RL, Petrolli MS, Hamerschlack N. Fecal microbiota transplant after hematopoietic SCT: report of a successful case. Bone Marrow Transplant. 2015;50:145.

    Article  PubMed  CAS  Google Scholar 

  80. Mathewson ND, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peled JU, et al. Intestinal microbiota and relapse after hematopoietic-cell transplantation. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(15):1650–9. doi:10.1200/JCO.2016.70.3348.

    Article  Google Scholar 

  82. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    CAS  PubMed  Google Scholar 

  83. Böhle A, Brandau S. Immune mechanisms in bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J Urol. 2003;170:964–9.

    Article  PubMed  Google Scholar 

  84. Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science. 1970;170:1217–8.

    Article  CAS  PubMed  Google Scholar 

  85. Morelli L, Capurso L. FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol. 2012;46(Suppl):S1–2.

    Article  PubMed  Google Scholar 

  86. Aragón F, Carino S, Perdigón G, de Moreno de LeBlanc A. Inhibition of growth and metastasis of breast cancer in mice by milk fermented with lactobacillus casei CRL 431. J Immunother. 2015;1997(38):185–96.

    Article  CAS  Google Scholar 

  87. Hu J, et al. Anti-tumour immune effect of oral administration of Lactobacillus plantarum to CT26 tumour-bearing mice. J Biosci. 2015;40:269–79.

    Article  CAS  PubMed  Google Scholar 

  88. Kato I, Endo K, Yokokura T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int J Immunopharmacol. 1994;16:29–36.

    Article  CAS  PubMed  Google Scholar 

  89. Cai S, et al. Lactobacillus rhamnosus GG activation of dendritic cells and neutrophils depends on the dose and time of exposure. J Immunol Res. 2016;2016:7402760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Khazaie K, et al. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A. 2012;109:10462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lenoir M, et al. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol. 2016;51:862–73.

    Article  CAS  PubMed  Google Scholar 

  92. Lee J-W, et al. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J Vet Sci. 2004;5:41–8.

    PubMed  Google Scholar 

  93. Baldwin C, et al. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer. 2010;62:371–8.

    Article  CAS  PubMed  Google Scholar 

  94. Konishi H, et al. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nat Commun. 2016;7:12365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Takagi A, et al. Relationship between the in vitro response of dendritic cells to Lactobacillus and prevention of tumorigenesis in the mouse. J Gastroenterol. 2008;43:661–9.

    Article  PubMed  Google Scholar 

  96. Li J, et al. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc Natl Acad Sci USA. 2016;113:E1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Martínez-Piñeiro JA, et al. Bacillus Calmette-Guerin versus doxorubicin versus thiotepa: a randomized prospective study in 202 patients with superficial bladder cancer. J Urol. 1990;143:502–6.

    Article  PubMed  Google Scholar 

  98. Aso Y, Akazan H. Prophylactic effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer BLP study group. Urol Int. 1992;49:125–9.

    Article  CAS  PubMed  Google Scholar 

  99. Ohashi Y, et al. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol Int. 2002;68:273–80.

    Article  CAS  PubMed  Google Scholar 

  100. Hoesl CE, Altwein JE. The probiotic approach: an alternative treatment option in urology. Eur Urol. 2005;47:288–96.

    Article  CAS  PubMed  Google Scholar 

  101. Stebbing J, et al. An intra-patient placebo-controlled phase I trial to evaluate the safety and tolerability of intradermal IMM-101 in melanoma. Ann Oncol. 2012;23:1314–9.

    Article  CAS  PubMed  Google Scholar 

  102. Dalgleish AG, et al. Randomised, open-label, phase II study of gemcitabine with and without IMM-101 for advanced pancreatic cancer. Br J Cancer. 2016;115:789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Le DT, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1325–33.

    Article  CAS  Google Scholar 

  104. Liu-Chittenden Y, et al. Phase I trial of systemic intravenous infusion of interleukin-13-Pseudomonas exotoxin in patients with metastatic adrenocortical carcinoma. Cancer Med. 2015;4:1060–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Weber F, et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neuro-Oncol. 2003;64:125–37.

    Google Scholar 

  106. Toso JF, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2002;20:142–52.

    Article  Google Scholar 

  107. Heimann DM, Rosenberg SA. Continuous intravenous administration of live genetically modified salmonella typhimurium in patients with metastatic melanoma. J. Immunother. 2003;1997(26):179–80.

    Article  Google Scholar 

  108. Nemunaitis J, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther. 2003;10:737–44.

    Article  CAS  PubMed  Google Scholar 

  109. Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med. 1997;3:1362–8.

    Article  CAS  PubMed  Google Scholar 

  110. Din MO, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536:81–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wolf AJ, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016;166:624–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Moura-Alves P, et al. AhR sensing of bacterial pigments regulates antibacterial defence. Nature. 2014;512:387–92.

    Article  CAS  PubMed  Google Scholar 

  113. Zitvogel L, et al. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15:465–78.

    Google Scholar 

  114. Ellerby HM, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5:1032–8.

    Article  CAS  PubMed  Google Scholar 

  115. Paavonen J, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374:301–14.

    Article  CAS  PubMed  Google Scholar 

  116. Comerford SA, et al. Acetate dependence of tumors. Cell. 2014;159:1591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mashimo T, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schug ZT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27:57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    Article  CAS  PubMed  Google Scholar 

  121. Smith PM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.

    Article  CAS  PubMed  Google Scholar 

  122. Jan G, et al. Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria. Cell Death Differ. 2002;9:179–88.

    Article  CAS  PubMed  Google Scholar 

  123. Wei W, Sun W, Yu S, Yang Y, Ai L. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk Lymphoma. 2016;57:2401–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Zitvogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonvalet, M., Daillère, R., Roberti, M.P., Rauber, C., Zitvogel, L. (2018). The Impact of the Intestinal Microbiota in Therapeutic Responses Against Cancer. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics