Skip to main content

The Molecular Pathology of Lung Cancer: Pre-analytic Considerations

  • Chapter
  • First Online:
Precision Molecular Pathology of Lung Cancer

Part of the book series: Molecular Pathology Library ((MPLB))

Abstract

Multiple pre-analytic factors are essential to the successful implementation of clinical genomic testing in lung cancer. These considerations include multidisciplinary patient care team communication, appropriate specimen triaging, tissue processing, specimen selection and adequacy assessment, assay requirement determination, maximizing the yield from a given specimen, as well as the incorporation of cytology specimens into genomic testing. This chapter reviews the above pre-analytic considerations including an assessment of the literature and evidence to support various practices in addition to providing effective strategies for addressing routinely encountered issues in the pre-analytic stage of lung cancer molecular testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smits AJ, Kummer JA, de Bruin PC, Bol M, van den Tweel JG, Seldenrijk KA, et al. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate. Mod Pathol. 2014;27(2):168–74.

    Article  PubMed  Google Scholar 

  2. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  Google Scholar 

  3. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.

    Article  Google Scholar 

  4. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.

    Article  Google Scholar 

  5. Zhang Z, Wang BJ, Guan HY, Pang H, Xuan JF. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp. J Forensic Sci. 2009;54(6):1304–9.

    Article  CAS  PubMed  Google Scholar 

  6. Esteve Codina A, Niederstatter H, Parson W. “GenderPlex” a PCR multiplex for reliable gender determination of degraded human DNA samples and complex gender constellations. Int J Legal Med. 2009;123(6):459–64.

    Article  PubMed  Google Scholar 

  7. Bramwell NH, Burns BF. The effects of fixative type and fixation time on the quantity and quality of extractable DNA for hybridization studies on lymphoid tissue. Exp Hematol. 1988;16(8):730–2.

    CAS  PubMed  Google Scholar 

  8. Douglas MP, Rogers SO. DNA damage caused by common cytological fixatives. Mutat Res. 1998;401(1–2):77–88.

    Article  CAS  PubMed  Google Scholar 

  9. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15(4):415–53.

    Article  CAS  PubMed  Google Scholar 

  10. McGhee JD, von Hippel PH. Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry. 1975;14(6):1297–303.

    Article  CAS  PubMed  Google Scholar 

  11. Ohba Y, Morimitsu Y, Watarai A. Reaction of formaldehyde with calf-thymus nucleohistone. Eur J Biochem. 1979;100(1):285–93.

    Article  CAS  PubMed  Google Scholar 

  12. Do H, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase. Oncotarget. 2012;3(5):546–58.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Do H, Wong SQ, Li J, Dobrovic A. Reducing sequence artifacts in amplicon-based massively parallel sequencing of formalin-fixed paraffin-embedded DNA by enzymatic depletion of uracil-containing templates. Clin Chem. 2013;59(9):1376–83.

    Article  CAS  PubMed  Google Scholar 

  14. Chen G, Mosier S, Gocke CD, Lin MT, Eshleman JR. Cytosine deamination is a major cause of baseline noise in next-generation sequencing. Mol Diagn Ther. 2014;18(5):587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol. 2002;161(6):1961–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wong C, DiCioccio RA, Allen HJ, Werness BA, Piver MS. Mutations in BRCA1 from fixed, paraffin-embedded tissue can be artifacts of preservation. Cancer Genet Cytogenet. 1998;107(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  17. Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M, Ponten J, et al. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol. 1999;155(5):1467–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen L, Liu P, Evans TC Jr, Ettwiller LM. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science. 2017;355(6326):752–6.

    Article  CAS  PubMed  Google Scholar 

  19. Fox CH, Johnson FB, Whiting J, Roller PP. Formaldehyde fixation. J Histochem Cytochem. 1985;33(8):845–53.

    Article  CAS  PubMed  Google Scholar 

  20. Baloglu G, Haholu A, Kucukodaci Z, Yilmaz I, Yildirim S, Baloglu H. The effects of tissue fixation alternatives on DNA content: a study on normal colon tissue. Appl Immunohistochem Mol Morphol. 2008;16(5):485–92.

    Article  CAS  PubMed  Google Scholar 

  21. Moore JL, Aros M, Steudel KG, Cheng KC. Fixation and decalcification of adult zebrafish for histological, immunocytochemical, and genotypic analysis. Biotechniques. 2002;32(2):296–8.

    CAS  PubMed  Google Scholar 

  22. Schrijver WA, van der Groep P, Hoefnagel LD, Ter Hoeve ND, Peeters T, Moelans CB, et al. Influence of decalcification procedures on immunohistochemistry and molecular pathology in breast cancer. Mod Pathol. 2016;29(12):1460–70.

    Article  CAS  PubMed  Google Scholar 

  23. Aisner DL, Deshpande C, Baloch Z, Watt CD, Litzky LA, Malhotra B, et al. Evaluation of EGFR mutation status in cytology specimens: an institutional experience. Diagn Cytopathol. 2013;41(4):316–23.

    Article  CAS  PubMed  Google Scholar 

  24. Chen CM, Chang JW, Cheung YC, Lin G, Hsieh JJ, Hsu T, et al. Computed tomography-guided core-needle biopsy specimens demonstrate epidermal growth factor receptor mutations in patients with non-small-cell lung cancer. Acta Radiol. 2008;49(9):991–4.

    Article  PubMed  Google Scholar 

  25. da Cunha SG, Saieg MA, Geddie W, Leighl N. EGFR gene status in cytological samples of nonsmall cell lung carcinoma: controversies and opportunities. Cancer Cytopathol. 2011;119(2):80–91.

    Article  Google Scholar 

  26. Gillespie JW, Best CJ, Bichsel VE, Cole KA, Greenhut SF, Hewitt SM, et al. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol. 2002;160(2):449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fiallo P, Williams DL, Chan GP, Gillis TP. Effects of fixation on polymerase chain reaction detection of mycobacterium leprae. J Clin Microbiol. 1992;30(12):3095–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63(10):3741–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Smouse JH, Cibas ES, Janne PA, Joshi VA, Zou KH, Lindeman NI. EGFR mutations are detected comparably in cytologic and surgical pathology specimens of nonsmall cell lung cancer. Cancer. 2009;117(1):67–72.

    PubMed  Google Scholar 

  30. Engelman JA, Mukohara T, Zejnullahu K, Lifshits E, Borras AM, Gale CM, et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Investig. 2006;116(10):2695–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chung J, Son DS, Jeon HJ, Kim KM, Park G, Ryu GH, et al. The minimal amount of starting DNA for Agilent’s hybrid capture-based targeted massively parallel sequencing. Sci Rep. 2016;6:26732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang F, Li MM. Clinical application of amplicon-based next-generation sequencing in cancer. Cancer Genet. 2013;206(12):413–9.

    Article  CAS  PubMed  Google Scholar 

  33. Stahlberg A, Krzyzanowski PM, Jackson JB, Egyud M, Stein L, Godfrey TE. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016;44(11):e105.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dote H, Tsukuda K, Toyooka S, Yano M, Pass HI, Shimizu N. Mutation analysis of the BRAF codon 599 in malignant pleural mesothelioma by enriched PCR-RFLP. Oncol Rep. 2004;11(2):361–3.

    CAS  PubMed  Google Scholar 

  35. Frantz C, Sekora DM, Henley DC, Huang CK, Pan Q, Quigley NB, et al. Comparative evaluation of three JAK2V617F mutation detection methods. Am J Clin Pathol. 2007;128(5):865–74.

    Article  CAS  PubMed  Google Scholar 

  36. Kawada I, Soejima K, Watanabe H, Nakachi I, Yasuda H, Naoki K, et al. An alternative method for screening EGFR mutation using RFLP in non-small cell lung cancer patients. J Thorac Oncol. 2008;3(10):1096–103.

    Article  PubMed  Google Scholar 

  37. Pan Q, Pao W, Ladanyi M. Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. J Mol Diagn. 2005;7(3):396–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clayton SJ, Scott FM, Walker J, Callaghan K, Haque K, Liloglou T, et al. K-ras point mutation detection in lung cancer: comparison of two approaches to somatic mutation detection using ARMS allele-specific amplification. Clin Chem. 2000;46(12):1929–38.

    CAS  PubMed  Google Scholar 

  39. Franklin WA, Haney J, Sugita M, Bemis L, Jimeno A, Messersmith WA. KRAS mutation: comparison of testing methods and tissue sampling techniques in colon cancer. J Mol Diagn. 2010;12(1):43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem. 2011;83(22):8604–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weidlich S, Walsh K, Crowther D, Burczynski ME, Feuerstein G, Carey FA, et al. Pyrosequencing-based methods reveal marked inter-individual differences in oncogene mutation burden in human colorectal tumours. Br J Cancer. 2011;105(2):246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dufort S, Richard MJ, Lantuejoul S, de Fraipont F. Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC. J Exp Clin Cancer Res. 2011;30:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, et al. Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn. 2005;7(3):413–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Su Z, Dias-Santagata D, Duke M, Hutchinson K, Lin YL, Borger DR, et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J Mol Diagn. 2011;13(1):74–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dias-Santagata D, Akhavanfard S, David SS, Vernovsky K, Kuhlmann G, Boisvert SL, et al. Rapid targeted mutational analysis of human tumours: a clinical platform to guide personalized cancer medicine. EMBO Mol Med. 2010;2(5):146–58.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Beadling C, Heinrich MC, Warrick A, Forbes EM, Nelson D, Justusson E, et al. Multiplex mutation screening by mass spectrometry evaluation of 820 cases from a personalized cancer medicine registry. J Mol Diagn. 2011;13(5):504–13.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sholl LM, Do K, Shivdasani P, Cerami E, Dubuc AM, Kuo FC, et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight. 2016;1(19):e87062.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim WY, Oh SY, Kim H, Hwang TS. DNA degradation in liquid-based cytology and its comparison with conventional smear. Diagn Cytopathol. 2016;44(5):450–8.

    Article  PubMed  Google Scholar 

  49. Piqueret-Stephan L, Marcaillou C, Reyes C, Honore A, Letexier M, Gentien D, et al. Massively parallel DNA sequencing from routinely processed cytological smears. Cancer Cytopathol. 2016;124(4):241–53.

    Article  CAS  PubMed  Google Scholar 

  50. Hunt JL, Finkelstein SD. Microdissection techniques for molecular testing in surgical pathology. Arch Pathol Lab Med. 2004;128(12):1372–8.

    PubMed  Google Scholar 

  51. Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30(4):499–508.

    Article  PubMed  Google Scholar 

  52. Gailey MP, Stence AA, Jensen CS, Ma D. Multiplatform comparison of molecular oncology tests performed on cytology specimens and formalin-fixed, paraffin-embedded tissue. Cancer Cytopathol. 2015;123(1):30–9.

    Article  CAS  PubMed  Google Scholar 

  53. Roh MH. The utilization of cytologic fine-needle aspirates of lung cancer for molecular diagnostic testing. J Pathol Transl Med. 2015;49(4):300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Betz BL, Dixon CA, Weigelin HC, Knoepp SM, Roh MH. The use of stained cytologic direct smears for ALK gene rearrangement analysis of lung adenocarcinoma. Cancer Cytopathol. 2013;121(9):489–99.

    Article  CAS  PubMed  Google Scholar 

  55. Minca EC, Lanigan CP, Reynolds JP, Wang Z, Ma PC, Cicenia J, et al. ALK status testing in non-small-cell lung carcinoma by FISH on ThinPrep slides with cytology material. J Thorac Oncol. 2014;9(4):464–8.

    Article  CAS  PubMed  Google Scholar 

  56. Padmanabhan V, Steinmetz HB, Rizzo EJ, Erskine AJ, Fairbank TL, de Abreu FB, et al. Improving adequacy of small biopsy and fine-needle aspiration specimens for molecular testing by next-generation sequencing in patients with lung cancer: a quality improvement study at Dartmouth-Hitchcock Medical Center. Arch Pathol Lab Med. 2017;141(3):402–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynette M. Sholl MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Ritterhouse, L., Sholl, L.M. (2018). The Molecular Pathology of Lung Cancer: Pre-analytic Considerations. In: Cagle, P., et al. Precision Molecular Pathology of Lung Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-62941-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62941-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62940-7

  • Online ISBN: 978-3-319-62941-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics