Skip to main content

A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension

  • Chapter
  • First Online:
Pulmonary Vasculature Redox Signaling in Health and Disease

Abstract

Pulmonary hypertension (PH) is characterized by increased vasoconstriction and smooth muscle cell hyperplasia driving pathological vascular remodeling of arterial vessels. In this short review, we discuss the primary source of reactive oxygen species (ROS) and nitric oxide (NO) relevant to PH and the mechanism by which dysregulation of their production contributes to PH. Specifically, hypoxia-induced PH is associated with diminished endothelial nitric oxide synthase (eNOS)-derived NO production and increased production of superoxide (O2 •-) through eNOS uncoupling and defective mitochondrial respiration. This drives the inhibition of the NO/soluble guanylate cyclase (sGC) pathway and activation of the transcription factor hypoxia-inducible factor-1α (HIF-1α) with consequential dysregulation of the pulmonary vasculature. Therapeutics aimed at increasing NO or cGMP bioavailabilities are amenable to hypoxia disease-induced PH. Similarly, strategies targeting HIF-1α are now considered. Overall, pulmonary hypertension including hypoxia-induced PH offers unique opportunities for the rational development of therapeutics centered on modulating redox signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naeije, R. (2005). Pulmonary hypertension and right heart failure in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2, 20–22.

    Article  PubMed  Google Scholar 

  2. Prabhakar, N. R., & Semenza, G. L. (2012). Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiological Reviews, 92, 967–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ball, M. K., Waypa, G. B., Mungai, P. T., Nielsen, J. M., Czech, L., Dudley, V. J., et al. (2014). Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1alpha. American Journal of Respiratory and Critical Care Medicine, 189, 314–324.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bonnet, S., Michelakis, E. D., Porter, C. J., Andrade-Navarro, M. A., Thebaud, B., Bonnet, S., et al. (2006). An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation, 113, 2630–2641.

    Article  CAS  PubMed  Google Scholar 

  5. Moncada, S., Palmer, R. M. J., & Higgs, E. A. (1991). Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacological Reviews, 43(2), 109–142.

    CAS  PubMed  Google Scholar 

  6. Nathan, C., & Xie, Q.-W. (1994). Nitric oxide synthases: Roles, tolls, and controls. Cell, 78, 915–918.

    Article  CAS  PubMed  Google Scholar 

  7. Feelisch, M., Rassaf, T., Mnaimneh, S., Singh, N., Bryan, N. S., Jourd’Heuil, D., et al. (2002). Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: Implications for the fate of NO in vivo. The FASEB Journal, 16, 1775–1785.

    Article  CAS  PubMed  Google Scholar 

  8. Grisham, M. B., Jourd'Heuil, D., & Wink, D. A. (1999). Nitric oxide. I. Physiological chemistry of nitric oxide and its metaolites: Implication in inflammation. The American Journal of Physiology, 39, G315–G321.

    Google Scholar 

  9. Foster, M. W., McMahon, T. J., & Stamler, J. S. (2003). S-nitrosylation in health and disease. Trends in Molecular Medicine, 9, 160–168.

    Article  CAS  PubMed  Google Scholar 

  10. Zweier, J. L., Wang, P., Samouilov, A., & Kuppusamy, P. (1995). Enzyme-independent formation of nitric oxide in biological tissues. Nature Medicine, 1, 804–809.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, Z., Shiva, S., Kim-Shapiro, D. B., Patel, R. P., Ringwood, L. A., Irby, C. E., et al. (2005). Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. Journal of Clinical Investigation, 118, 2099–2107.

    Article  Google Scholar 

  12. Rassaf, T., Totzeck, M., Hendgen-Cotta, U. B., Shiva, S., Heusch, G., & Kelm, M. (2014). Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circulation Research, 114, 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  13. Tiso, M., Tejero, J., Basu, S., Azarov, I., Wang, X., Simplaceanu, V., et al. (2011). Human neuroglobin functions as a redox-regulated nitrite reductase. The Journal of Biological Chemistry, 286, 18277–18289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, H., Hemann, C., Abdelghany, T. M., El-Mahdy, M. A., & Zweier, J. L. (2012). Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. The Journal of Biological Chemistry, 287, 36623–36633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, H., Samouilov, A., Liu, X., & Zweier, J. L. (2001). Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. The Journal of Biological Chemistry, 276, 24482–24489.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, J., Krizowski, S., Fischer-Schrader, K., Niks, D., Tejero, J., Sparacino-Watkins, C., et al. (2015). Sulfite oxidase catalyzes single-electron transfer at molybdenum domain to reduce nitrite to nitric oxide. Antioxidants & Redox Signaling, 23, 283–294.

    Article  CAS  Google Scholar 

  17. Sparacino-Watkins, C. E., Tejero, J., Sun, B., Gauthier, M. C., Thomas, J., Ragireddy, V., et al. (2014). Nitrite reductase and nitric-oxide synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. The Journal of Biological Chemistry, 289, 10345–10358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., & Freeman, B. A. (1990). Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America, 87, 1620–1624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beckman, J. S., Ischiropoulos, H., Zhu, L., van der Woerd, M., Smith, C., Chen, J., et al. (1992). Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Archives of Biochemistry and Biophysics, 298, 438–445.

    Article  CAS  PubMed  Google Scholar 

  20. Gow, A. J., Buerk, D. G., & Ischiropoulos, H. (1997). A novel reaction mechanism for the formation of S-nitrosothiol in vivo. The Journal of Biological Chemistry, 272, 2841–2845.

    Article  CAS  PubMed  Google Scholar 

  21. Denicola, A., Freeman, B. A., Trujillo, M., & Radi, R. (1996). Peroxynitrite reaction with carbon dioxide/bicarbonate kinetics and influence on peroxynitrite-mediated oxidations. Archives of Biochemistry and Biophysics, 333, 49–58.

    Article  CAS  PubMed  Google Scholar 

  22. Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite; the good, the bad, and the ugly. The American Journal of Physiology, 271, C1424–C1437.

    CAS  PubMed  Google Scholar 

  23. Fagan, K. A., Fouty, B. W., Tyler, R. C., Morris, K. G., Jr., Hepler, L. K., Sato, K., et al. (1999). The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. The Journal of Clinical Investigation, 103, 291–299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kharitonov, S. A., Cailes, J. B., Black, C. M., du Bois, R. M., & Barnes, P. J. (1997). Decreased nitric oxide in the exhaled air of patients with systemic sclerosis with pulmonary hypertension. Thorax, 52, 1051–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quinlan, T. R., Li, D., Laubach, V. E., Shesely, E. G., Zhou, N., & Johns, R. A. (2000). eNOS-deficient mice show reduced pulmonary vascular proliferation and remodeling to chronic hypoxia. American Journal of Physiology—Lung Cellular and Molecular Physiology, 279, L641–L650.

    CAS  PubMed  Google Scholar 

  26. Xue, C., & Johns, R. A. (1995). Endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. The New England Journal of Medicine, 333, 1642–1644.

    Article  CAS  PubMed  Google Scholar 

  27. Giaid, A., & Saleh, D. (1995). Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. The New England Journal of Medicine, 333, 214–221.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, Y. Y., Zhao, Y. D., Mirza, M. K., Huang, J. H., Potula, H. H., Vogel, S. M., et al. (2009). Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. The Journal of Clinical Investigation, 119, 2009–2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Block, E. R., Herrera, H., & Couch, M. (1995). Hypoxia inhibits L-arginine uptake by pulmonary artery endothelial cells. The American Journal of Physiology, 269, L574–L580.

    CAS  PubMed  Google Scholar 

  30. Xu, W., Kaneko, F. T., Zheng, S., Comhair, S. A., Janocha, A. J., Goggans, T., et al. (2004). Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. The FASEB Journal, 18, 1746–1748.

    CAS  PubMed  Google Scholar 

  31. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. The Journal of Clinical Investigation, 111, 1201–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tsugu, T., Murata, M., Kawakami, T., Kataoka, M., Nagatomo, Y., Tsuruta, H., et al. (2016). Amelioration of right ventricular function after hybrid therapy with riociguat and balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. International Journal of Cardiology, 221, 227–229.

    Article  PubMed  Google Scholar 

  33. Wardle, A. J., Seager, M. J., Wardle, R., Tulloh, R. M., & Gibbs, J. S. (2016). Guanylate cyclase stimulators for pulmonary hypertension. Cochrane Database of Systematic Reviews, 8, CD011205.

    Google Scholar 

  34. Benza, R., Mathai, S., & Nathan, S. D. (2016). sGC stimulators: Evidence for riociguat beyond groups 1 and 4 pulmonary hypertension. Respiratory Medicine, 122, S28–S34.

    Article  PubMed  Google Scholar 

  35. Galie, N., Brundage, B. H., Ghofrani, H. A., Oudiz, R. J., Simonneau, G., Safdar, Z., et al. (2009). Tadalafil therapy for pulmonary arterial hypertension. Circulation, 119, 2894–2903.

    Article  CAS  PubMed  Google Scholar 

  36. Baliga, R. S., Milsom, A. B., Ghosh, S. M., Trinder, S. L., Macallister, R. J., Ahluwalia, A., et al. (2012). Dietary nitrate ameliorates pulmonary hypertension: Cytoprotective role for endothelial nitric oxide synthase and xanthine oxidoreductase. Circulation, 125, 2922–2932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pankey, E. A., Badejo, A. M., Casey, D. B., Lasker, G. F., Riehl, R. A., Murthy, S. N., et al. (2012). Effect of chronic sodium nitrite therapy on monocrotaline-induced pulmonary hypertension. Nitric Oxide, 27, 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zuckerbraun, B. S., Shiva, S., Ifedigbo, E., Mathier, M. A., Mollen, K. P., Rao, J., et al. (2010). Nitrite potently inhibits hypoxic and inflammatory pulmonary arterial hypertension and smooth muscle proliferation via xanthine oxidoreductase-dependent nitric oxide generation. Circulation, 121, 98–109.

    Article  CAS  PubMed  Google Scholar 

  39. Simon, M. A., Vanderpool, R. R., Nouraie, M., Bachman, T. N., White, P. M., Sugahara, M., et al. (2016). Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction. JCI Insight, 1, e89620.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Waypa, G. B., Smith, K. A., & Schumacker, P. T. (2016). O2 sensing, mitochondria and ROS signaling: The fog is lifting. Molecular Aspects of Medicine, 47–48, 76–89.

    Article  PubMed  Google Scholar 

  41. Ryan, J. J., Marsboom, G., Fang, Y. H., Toth, P. T., Morrow, E., Luo, N., et al. (2013). PGC1alpha-mediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine, 187, 865–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thompson, C. B. (2016). Into thin air: How we sense and respond to Hypoxia. Cell, 167, 9–11.

    Article  CAS  PubMed  Google Scholar 

  43. Marshall, C., Mamary, A. J., Verhoeven, A. J., & Marshall, B. E. (1996). Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. American Journal of Respiratory Cell and Molecular Biology, 15, 633–644.

    Article  CAS  PubMed  Google Scholar 

  44. Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C., & Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences of the United States of America, 95, 11715–11720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schroedl, C., McClintock, D. S., Budinger, G. R., & Chandel, N. S. (2002). Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. American Journal of Physiology—Lung Cellular and Molecular Physiology, 283, L922–L931.

    Article  CAS  PubMed  Google Scholar 

  46. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., et al. (2005). Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism, 1, 393–399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waypa, G. B., Marks, J. D., Guzy, R., Mungai, P. T., Schriewer, J., Dokic, D., et al. (2010). Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circulation Research, 106, 526–535.

    Article  CAS  PubMed  Google Scholar 

  48. Waypa, G. B., Marks, J. D., Guzy, R. D., Mungai, P. T., Schriewer, J. M., Dokic, D., et al. (2013). Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. American Journal of Respiratory and Critical Care Medicine, 187, 424–432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimoda, L. A., & Semenza, G. L. (2011). HIF and the lung: Role of hypoxia-inducible factors in pulmonary development and disease. American Journal of Respiratory and Critical Care Medicine, 183, 152–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R. C., & Conaway, J. W. (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proceedings of the National Academy of Sciences of the United States of America, 97, 10430–10435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maxwell, P. H., Wiesener, M. S., Chang, G. W., Clifford, S. C., Vaux, E. C., Cockman, M. E., et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399, 271–275.

    Article  CAS  PubMed  Google Scholar 

  52. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science, 292, 464–468.

    Article  CAS  PubMed  Google Scholar 

  53. Epstein, A. C., Gleadle, J. M., McNeill, L. A., Hewitson, K. S., O'Rourke, J., Mole, D. R., et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 107, 43–54.

    Article  CAS  PubMed  Google Scholar 

  54. Ivan, M., Haberberger, T., Gervasi, D. C., Michelson, K. S., Gunzler, V., Kondo, K., et al. (2002). Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proceedings of the National Academy of Sciences of the United States of America, 99, 13459–13464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chua, Y. L., Dufour, E., Dassa, E. P., Rustin, P., Jacobs, H. T., Taylor, C. T., et al. (2010). Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. The Journal of Biological Chemistry, 285, 31277–31284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., et al. (2005). Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metabolism, 1, 409–414.

    Article  CAS  PubMed  Google Scholar 

  57. Guzy, R. D., Hoyos, B., Robin, E., Chen, H., Liu, L., Mansfield, K. D., et al. (2005). Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metabolism, 1, 401–408.

    Article  CAS  PubMed  Google Scholar 

  58. Shimoda, L. A., Manalo, D. J., Sham, J. S., Semenza, G. L., & Sylvester, J. T. (2001). Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. American Journal of Physiology—Lung Cellular and Molecular Physiology, 281, L202–L208.

    CAS  PubMed  Google Scholar 

  59. Kline, D. D., Peng, Y. J., Manalo, D. J., Semenza, G. L., & Prabhakar, N. R. (2002). Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proceedings of the National Academy of Sciences of the United States of America, 99, 821–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shimoda, L. A., Fallon, M., Pisarcik, S., Wang, J., & Semenza, G. L. (2006). HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. American Journal of Physiology—Lung Cellular and Molecular Physiology, 291, L941–L949.

    Article  CAS  PubMed  Google Scholar 

  61. Yu, A. Y., Shimoda, L. A., Iyer, N. V., Huso, D. L., Sun, X., McWilliams, R., et al. (1999). Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. The Journal of Clinical Investigation, 103, 691–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Popov, S., Takemori, H., Tokudome, T., Mao, Y., Otani, K., Mochizuki, N., et al. (2014). Lack of salt-inducible kinase 2 (SIK2) prevents the development of cardiac hypertrophy in response to chronic high-salt intake. PloS One, 9, e95771.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morrell, N. W., Adnot, S., Archer, S. L., Dupuis, J., Jones, P. L., MacLean, M. R., et al. (2009). Cellular and molecular basis of pulmonary arterial hypertension. Journal of the American College of Cardiology, 54, S20–S31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shimoda, L. A., Sham, J. S., Shimoda, T. H., & Sylvester, J. T. (2000). L-type Ca(2+) channels, resting [Ca(2+)](i), and ET-1-induced responses in chronically hypoxic pulmonary myocytes. American Journal of Physiology—Lung Cellular and Molecular Physiology, 279, L884–L894.

    CAS  PubMed  Google Scholar 

  65. Wang, J., Weigand, L., Lu, W., Sylvester, J. T., Semenza, G. L., & Shimoda, L. A. (2006). Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circulation Research, 98, 1528–1537.

    Article  CAS  PubMed  Google Scholar 

  66. Archer, S. L., Souil, E., Dinh-Xuan, A. T., Schremmer, B., Mercier, J. C., El Yaagoubi, A., et al. (1998). Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. The Journal of Clinical Investigation, 101, 2319–2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reeve, H. L., Michelakis, E., Nelson, D. P., Weir, E. K., & Archer, S. L. (2001). Alterations in a redox oxygen sensing mechanism in chronic hypoxia. Journal of Applied Physiology, 90, 2249–2256.

    CAS  PubMed  Google Scholar 

  68. Yuan, X. J., Wang, J., Juhaszova, M., Gaine, S. P., & Rubin, L. J. (1998). Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet, 351, 726–727.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, H., Qian, D. Z., Tan, Y. S., Lee, K., Gao, P., Ren, Y. R., et al. (2008). Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 105, 19579–19586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abud, E. M., Maylor, J., Undem, C., Punjabi, A., Zaiman, A. L., Myers, A. C., et al. (2012). Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proceedings of the National Academy of Sciences of the United States of America, 109, 1239–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Michelakis, E. D., McMurtry, M. S., Wu, X. C., Dyck, J. R., Moudgil, R., Hopkins, T. A., et al. (2002). Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: Role of increased expression and activity of voltage-gated potassium channels. Circulation, 105, 244–250.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by National Institutes of health grant K01HL130704 (A. Jaitovich) and American Heart Association grant AHA-16GRNT31280002 (D. Jourd’heuil). Figures were produced using Servier Medical Art (www.servier.com).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ariel Jaitovich M.D. or David Jourd’heuil Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jaitovich, A., Jourd’heuil, D. (2017). A Brief Overview of Nitric Oxide and Reactive Oxygen Species Signaling in Hypoxia-Induced Pulmonary Hypertension. In: Wang, YX. (eds) Pulmonary Vasculature Redox Signaling in Health and Disease. Advances in Experimental Medicine and Biology, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-319-63245-2_6

Download citation

Publish with us

Policies and ethics