Skip to main content

3D-Printed Biohybrid Robots Powered by Neuromuscular Tissue Circuits from Aplysia californica

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2017)

Abstract

Biohybrid robotics offers the possibility of compliant, bio-compatible actuation and adaptive behavioral flexibility via the use of muscles as robotic actuators and neural circuits as controllers. In this study, neuromuscular tissue circuits from Aplysia californica have been characterized and implemented on 3D-printed inchworm-inspired biohybrid robots, creating the first locomotive biohybrid robots with both organic actuation and organic motor-pattern control. Stimulation via the organic motor-controller is shown to result in higher muscle tension and faster device speeds as compared to external electrical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cvetkovic, C., Raman, R., Chan, V., Williams, B.J., Tolish, M., Bajaj, P., Sakar, M.S., Asada, H.H., Saif, M.T.A., Bashir, R.: Three-dimensionally printed biological machines powered by skeletal muscle. PNAS 111(28), 10125–10130 (2014)

    Article  Google Scholar 

  2. Webster, V.A., Hawley, E.L., Akkus, O., Chiel, H.J., Quinn, R.D.: Effect of actuating cell source on locomotion of organic living machines with electrocompacted collagen skeleton. Bioinspiration Biomim. 11(3), 036012 (2016)

    Article  Google Scholar 

  3. Nawroth, J.C., Lee, H., Feinberg, A.W., Ripplinger, C.M., McCain, M.L., Grosberg, A., Dabiri, J.O., Parker, K.K.: A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30(8), 792–797 (2012)

    Article  Google Scholar 

  4. Park, S.-J., Gazzola, M., Park, K.S., Park, S., Di Santo, V., Blevins, E.L., Lind, J.U., Campbell, P.H., Dauth, S., Capulli, A.K., Pasqualini, F.S., Ahn, S., Cho, A., Yuan, H., Maoz, B.M., Vijaykumar, R., Choi, J.-W., Deisseroth, K., Lauder, G.V., Mahadevan, L., Parker, K.K.: Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295), 158–162 (2016)

    Article  Google Scholar 

  5. Williams, B.J., Anand, S.V., Rajagopalan, J., Saif, M.T.A.: A self-propelled biohybrid swimmer at low Reynolds number. Nat. Commun. 5(3081) (2014)

    Google Scholar 

  6. Ferrández, J.M., Lorente, V., DelaPaz, F., Cuadra, J.M., Álvarez-Sánchez, J.R., Fernández, E.: A biological neuroprocessor for robotic guidance using a center of area method. Neurocomputing 74(8), 1229–1236 (2011)

    Article  Google Scholar 

  7. De Santos, D., Lorente, V., De La Paz, F., Manuel Cuadra, J., Lvarez-Snchez, J.R., Fernández, E., Ferrández, J.M., Ferrández, J.M.: A client-server architecture for remotely controlling a robot using a closed-loop system with a biological neuroprocessor. Robot. Auton. Syst. 58(12), 1223–1230 (2010)

    Article  Google Scholar 

  8. Wilkinson, S.: ‘Gastrobots’ - benefits and challenges of microbial fuel cells in food powered robot applications. Auton. Robot. 9(2), 99–111 (2000)

    Article  MathSciNet  Google Scholar 

  9. Philamore, H., Rossiter, J., Stinchcombe, A., Ieropoulos, I.: Row-bot: an energetically autonomous artificial water boatman. In: IEEE International Conference on Intelligent Robots and Systems, pp. 3888–3893 (2015)

    Google Scholar 

  10. Ieropoulos, I., Melhuish, C., Greenman, J., Horsfield, I.: EcoBot-II: an artificial agent with a natural metabolism. Int. J. Adv. Robot. Syst. 2(4), 295–300 (2005)

    Article  Google Scholar 

  11. Webster, V.A., Chapin, K.J., Hawley, E.L., Patel, J.M., Akkus, O., Chiel, H.J., Quinn, R.D.: Aplysia californica as a novel source of material for biohybrid robots and organic machines. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS, vol. 9793, pp. 365–374. Springer, Cham (2016). doi:10.1007/978-3-319-42417-0_33

    Chapter  Google Scholar 

  12. Lu, H., McManus, J.M., Cullins, M.J., Chiel, H.J.: Preparing the periphery for a subsequent behavior: motor neuronal activity during biting generates little force but prepares a retractor muscle to generate larger forces during swallowing in Aplysia. J. Neurosci. 35(12), 5051–5066 (2015)

    Article  Google Scholar 

  13. Hurwitz, I., Neustadter, D., Morton, D.W., Chiel, H.J., Susswein, A.J.: Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in Aplysia californica. J. Neurophysiol. 75(4), 1309–1326 (1996)

    Google Scholar 

  14. Susswein, A.J., Rosen, S.C., Gapon, S., Kupfermann, I.: Characterization of buccal motor programs elicited by a cholinergic agonist applied to the cerebral ganglion of Aplysia californica. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 179(4), 509–524 (1996)

    Article  Google Scholar 

  15. Shaw, K.M., Lyttle, D.N., Gill, J.P., Cullins, M.J., Mcmanus, J.M., Lu, H., Thomas, P.J., Chiel, H.J.: The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior. J. Comput. Neurosci. 38, 25–51 (2015)

    Article  MathSciNet  Google Scholar 

  16. Horchler, A.D., Daltorio, K.A., Chiel, H.J., Quinn, R.D.: Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control. Bioinspiration Biomim. 10(2), 26001 (2015)

    Article  Google Scholar 

  17. Yu, S.N., Crago, P.E., Chiel, H.J.: Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia. Biol. Cybern. 81, 505–513 (1999)

    Article  Google Scholar 

  18. Mortimer, J.T.: Motor Prostheses In: Comprehensive Physiology 2011, Supplement 2: Handbook of Physiology, The Nervous System, Motor Control, pp. 155–187 (1981)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yanjun Zhang for assistance in actuator characterization. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0951783 and a GAANN Fellowship (Grant No. P200A150316). This study was also funded in part by grants from the National Science Foundation (Grant No. DMR-1306665), and the National Institute of Health (Grant No. R01 AR063701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria A. Webster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Webster, V.A. et al. (2017). 3D-Printed Biohybrid Robots Powered by Neuromuscular Tissue Circuits from Aplysia californica . In: Mangan, M., Cutkosky, M., Mura, A., Verschure, P., Prescott, T., Lepora, N. (eds) Biomimetic and Biohybrid Systems. Living Machines 2017. Lecture Notes in Computer Science(), vol 10384. Springer, Cham. https://doi.org/10.1007/978-3-319-63537-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63537-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63536-1

  • Online ISBN: 978-3-319-63537-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics