Skip to main content

Learning Deep and Shallow Features for Human Activity Recognition

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10412))

Abstract

selfBACK is an mHealth decision support system used by patients for the self-management of Lower Back Pain. It uses Human Activity Recognition from wearable sensors to monitor user activity in order to measure their adherence to prescribed physical activity plans. Different feature representation approaches have been proposed for Human Activity Recognition, including shallow, such as with hand-crafted time domain features and frequency transformation features; or, more recently, deep with Convolutional Neural Net approaches. The different approaches have produced mixed results in previous work and a clear winner has not been identified. This is especially the case for wrist mounted accelerometer sensors which are more susceptible to random noise compared to data from sensors mounted at other body locations e.g. thigh, waist or lower back. In this paper, we compare 7 different feature representation approaches on accelerometer data collected from both the wrist and the thigh. In particular, we evaluate a Convolutional Neural Net hybrid approach that has been shown to be effective on image retrieval but not previously applied to Human Activity Recognition. Results show the hybrid approach is effective, producing the best results compared to both hand-crafted and frequency domain feature representations by a margin of over \(1.4\%\) on the wrist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.selfback.net/.

  2. 2.

    http://axivity.com/product/ax3.

  3. 3.

    https://github.com/rgu-selfback/activity-recognition.

  4. 4.

    Significance is tested with a two-tailed student’s t-test at p = 0.05.

References

  1. Airaksinen, O., Brox, J., Cedraschi, C.O., Hildebrandt, J., Klaber-Moffett, J., Kovacs, F., Mannion, A., Reis, S., Staal, J., Ursin, H., et al.: Chapter 4 European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 15, s192–s300 (2006)

    Article  Google Scholar 

  2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)

    Google Scholar 

  3. Bach, K., Szczepanski, T., Aamodt, A., Gundersen, O.E., Mork, P.J.: Case representation and similarity assessment in the selfBACK decision support system. In: Goel, A., Díaz-Agudo, M.B., Roth-Berghofer, T. (eds.) ICCBR 2016. LNCS, vol. 9969, pp. 32–46. Springer, Cham (2016). doi:10.1007/978-3-319-47096-2_3

    Chapter  Google Scholar 

  4. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  5. Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.: Preprocessing techniques for context recognition from accelerometer data. Pers. Ubiquit. Comput. 14(7), 645–662 (2010)

    Article  Google Scholar 

  6. Gao, L., Bourke, A., Nelson, J.: Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Med. Eng. Phys. 36(6), 779–785 (2014)

    Article  Google Scholar 

  7. Hammerla, N.Y., Halloran, S., Ploetz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. In: Proceedings of the 25th International Joint Conference on AI (2016)

    Google Scholar 

  8. Huang, F.J., Lecun, Y.: Large-scale learning with SVM and convolutional for generic object categorization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 284–291 (2016)

    Google Scholar 

  9. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  10. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Mannini, A., Intille, S.S., Rosenberger, M., Sabatini, A.M., Haskell, W.: Activity recognition using a single accelerometer placed at the wrist or ankle. Med. Sci. Sports Exerc. 45(11), 2193 (2013)

    Article  Google Scholar 

  12. Mäntyjärvi, J., Himberg, J., Seppänen, T.: Recognizing human motion with multiple acceleration sensors. In: 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 747–752. IEEE (2001)

    Google Scholar 

  13. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity recognition and monitoring using multiple sensors on different body positions. In: BSN International Workshop on Wearable and Implantable Body Sensor Networks, 2006. IEEE (2006)

    Google Scholar 

  14. Plötz, T., Hammerla, N.Y., Olivier, P.: Feature learning for activity recognition in ubiquitous computing. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1729–1734. AAAI Press (2011)

    Google Scholar 

  15. Ravi, D., Wong, C., Lo, B., Yang, G.Z.: A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health Inform. 21(1), 56–64 (2017)

    Article  Google Scholar 

  16. Ronao, C.A., Cho, S.-B.: Deep convolutional neural networks for human activity recognition with smartphone sensors. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 46–53. Springer, Cham (2015). doi:10.1007/978-3-319-26561-2_6

    Chapter  Google Scholar 

  17. Sani, S., Wiratunga, N., Massie, S., Cooper, K.: SELFBACK—activity recognition for self-management of low back pain. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXXIII, pp. 281–294. Springer, Cham (2016). doi:10.1007/978-3-319-47175-4_21

    Chapter  Google Scholar 

  18. Sani, S., Wiratunga, N., Massie, S., Cooper, K.: kNN sampling for personalised human activity recognition. In: Aha, D., Lieber, J. (eds.) Case-Based Reasoning Research and Development. ICCBR 2017. LNCS, vol. 10339, pp. 330–344. Springer, Cham (2017). doi:10.1007/978-3-319-61030-6_23

    Google Scholar 

  19. Shoaib, M., Bosch, S., Incel, O.D., Scholten, H., Havinga, P.J.: Fusion of smartphone motion sensors for physical activity recognition. Sensors 14(6), 10146–10176 (2014)

    Article  Google Scholar 

  20. Tapia, E.M., Intille, S.S., Haskell, W., Larson, K., Wright, J., King, A., Friedman, R.: Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In: Proceedings of 11th IEEE International Symposium on Wearable Computers, pp. 37–40 (2007)

    Google Scholar 

  21. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional neural networks for human activity recognition using mobile sensors. In: Proceedings of 6th International Conference on Mobile Computing, Applications and Services, pp. 197–205 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stewart Massie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sani, S., Massie, S., Wiratunga, N., Cooper, K. (2017). Learning Deep and Shallow Features for Human Activity Recognition. In: Li, G., Ge, Y., Zhang, Z., Jin, Z., Blumenstein, M. (eds) Knowledge Science, Engineering and Management. KSEM 2017. Lecture Notes in Computer Science(), vol 10412. Springer, Cham. https://doi.org/10.1007/978-3-319-63558-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63558-3_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63557-6

  • Online ISBN: 978-3-319-63558-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics