Skip to main content

Optimal Dynamic Coverage Infrastructure for Large-Scale Fleets of Reconnaissance UAVs

  • Chapter
  • First Online:
Swarms and Network Intelligence in Search

Part of the book series: Studies in Computational Intelligence ((SCI,volume 729))

Abstract

Current state of the art in the field of UAV activation relies solely on human operators for the design and adaptation of the drones flying routes. Furthermore, this is being done today on an individual level (one vehicle per operators), with some exceptions of a handful of new systems, that are comprised of a small number of self-organizing swarms, manually guided by a human operator. Drones-based monitoring is of great importance in variety of civilian domains, such as road safety, homeland security, and even environmental control. In its military aspect, efficiently detecting evading targets by a fleet of unmanned drones has an ever increasing impact on the ability of modern armies to engage in warfare. The latter is true both traditional symmetric conflicts among armies as well as asymmetric ones. Be it a speeding driver, a polluting trailer or a covert convoy, the basic challenge remains the same — how can its detection probability be maximized using as little number of drones as possible. In this work we propose a novel approach for the optimization of large scale swarms of reconnaissance drones — capable of producing on-demand optimal coverage strategies for any given search scenario. Given an estimation cost of the threat’s potential damages, as well as types of monitoring drones available and their comparative performance, our proposed method generates an analytically provable strategy, stating the optimal number and types of drones to be deployed, in order to cost-efficiently monitor a pre-defined region for targets maneuvering using a given roads networks. We demonstrate our model using a unique dataset of the Israeli transportation network, on which different deployment schemes for drones deployment are evaluated.

This work was previously published in [20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our model assumes continuous selection of drones’ types. In reality of course there is a finite number of drones model. Therefore, after producing the optimal value for the cost of a single drone, we would select the two available models closest in cost to this optimal value (namely, the more expensive cheaper one, and the cheapest more expensive one), assign their cost in the model, and select the one for which the merit function is higher.

References

  1. E.U. Acar, Y. Zhang, H. Choset, M. Schervish, A.G. Costa, R. Melamud, D.C. Lean, A. Gravelin, Path planning for robotic demining and development of a test platform, in International Conference on Field and Service Robotics (2001), pp. 161–168

    Google Scholar 

  2. M.M. Aid, All glory is fleeting: sigint and the fight against international terrorism. Intell. Natl. Secur. 18(4), 72–120 (2003)

    Google Scholar 

  3. S. Alpern, S. Gal, The Theory of Search Games and Rendezvous (Kluwer Academic Publishers, Boston, 2003)

    MATH  Google Scholar 

  4. Y. Altshuler, A.M. Bruckstein, The complexity of grid coverage by swarm robotics, in ANTS 2010 (LNCS, 2010), pp. 536–543

    Google Scholar 

  5. Y. Altshuler, A.M. Bruckstein, Static and expanding grid coverage with ant robots: complexity results. Theoret. Comput. Sci. 412(35), 4661–4674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Altshuler, A.M. Bruckstein, I.A. Wagner, Swarm robotics for a dynamic cleaning problem, in IEEE Swarm Intelligence Symposium (2005), pp. 209–216

    Google Scholar 

  7. Y. Altshuler, V. Yanovski, I.A. Wagner, A.M. Bruckstein, The cooperative hunters - efficient cooperative search for smart targets using uav swarms, in Second International Conference on Informatics in Control, Automation and Robotics (ICINCO), the First International Workshop on Multi-Agent Robotic Systems (MARS) (2005), pp. 165–170

    Google Scholar 

  8. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Shape factor‘s effect on a dynamic cleaners swarm, in Third International Conference on Informatics in Control, Automation and Robotics (ICINCO), the Second International Workshop on Multi-Agent Robotic Systems (MARS) (2006), pp. 13–21

    Google Scholar 

  9. Y. Altshuler, V. Yanovsky, I. Wagner, A. Bruckstein, Swarm intelligencesearchers, cleaners and hunters. Swarm Intelligent Systems (2006), pp. 93–132

    Google Scholar 

  10. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, On swarm optimality in dynamic and symmetric environments 7, 11 (2008)

    Google Scholar 

  11. Y. Altshuler, V. Yanovsky, A.M. Bruckstein, I.A. Wagner, Efficient cooperative search of smart targets using uav swarms. ROBOTICA 26, 551–557 (2008)

    Article  Google Scholar 

  12. Y. Altshuler, I.A. Wagner, A.M. Bruckstein, Collaborative exploration in grid domains, in Sixth International Conference on Informatics in Control, Automation and Robotics (ICINCO) (2009)

    Google Scholar 

  13. Y. Altshuler, S. Dolev, Y. Elovici, N. Aharony, Ttled random walks for collaborative monitoring, in NetSciCom 2010 (Second International Workshop on Network Science for Communication Networks), San Diego, CA, USA, vol. 3 (2010)

    Google Scholar 

  14. Y. Altshuler, I.A. Wagner, V. Yanovski, A.M. Bruckstein, Multi-agent cooperative cleaning of expanding domains. Int. J. Robot. Res. 30, 1037–1071 (2010)

    Google Scholar 

  15. Y. Altshuler, N. Aharony, M. Fire, Y. Elovici, A Pentland, Incremental learning with accuracy prediction of social and individual properties from mobile-phone data, in CoRR (2011)

    Google Scholar 

  16. Y. Altshuler, N. Aharony, A. Pentland, Y. Elovici, M. Cebrian, Stealing reality: when criminals become data scientists (or vice versa). Intell. Syst. IEEE 26(6), 22–30 (2011)

    Article  Google Scholar 

  17. Y. Altshuler, M. Fire, N. Aharony, Y. Elovici, A Pentland, How many makes a crowd? on the correlation between groups’ size and the accuracy of modeling, in International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction (Springer, 2012), pp. 43–52

    Google Scholar 

  18. Y. Altshuler, M. Fire, N. Aharony, Z. Volkovich, Y. Elovici, A. Sandy Pentland, Trade-offs in social and behavioral modeling in mobile networks, in Social Computing, Behavioral-Cultural Modeling and Prediction (Springer, 2013), pp. 412–423

    Google Scholar 

  19. Y. Altshuler, E. Shmueli, G. Zyskind, O. Lederman, N. Oliver, A. Pentland, Campaign optimization through behavioral modeling and mobile network analysis. IEEE Trans. Comput. Soc. Syst. 1(2), 121–134 (2014)

    Article  Google Scholar 

  20. Y. Altshuler, A. Pentland, S. Bekhor, Y. Shiftan, A. Bruckstein, Optimal dynamic coverage infrastructure for large-scale fleets of reconnaissance uavs (2016), arXiv:1611.05735

  21. Y. Altshuler, R. Puzis, Y. Elovici, S. Bekhor, A. Sandy Pentland, On the rationality and optimality of transportation networks defense: a network centrality approach. Securing Transportation Systems (2015), pp. 35–63

    Google Scholar 

  22. J.M. Anthonisse, The rush in a directed graph. Technical Report BN 9/71, Stichting Mathematisch Centrum, Amsterdam (1971)

    Google Scholar 

  23. R.C. Arkin, Integrating behavioral, perceptual, and world knowledge in reactive navigation. Robot. Auton. Syst. 6, 105–122 (1990)

    Article  Google Scholar 

  24. D. Ball et al., Burma’s Military Secrets: Signals Intelligence (SIGINT) from 1941 to Cyber Warfare (White Lotus Press, 1998)

    Google Scholar 

  25. M. Barthélemy, Betweenness centrality in large complex networks. Eur. Phys. J. B - Condens. Matter 38(2), 163–168 (2004)

    Google Scholar 

  26. R. Bejar, B. Krishnamachari, C. Gomes, B. Selman, Distributed constraint satisfaction in a wireless sensor tracking system, in Proceedings of the IJCAI-01 Workshop on Distributed Constraint Reasoning (2001)

    Google Scholar 

  27. S. Bekhor, Y. Cohen, C. Solomon, Evaluating long-distance travel patterns in israel by tracking cellular phone positions. J. Adv. Transp. pp. n/a–n/a (2011)

    Google Scholar 

  28. M.G. Bell, S. Grosso, A. Ehlert, The optimisation of traffic count locations in road networks. Transp. Res. Part B 40(6), 460–479 (2006)

    Article  Google Scholar 

  29. D.J. Berndt, A.R. Hevner, J. Studnicki, Bioterrorism surveillance with real-time data warehousing, in Proceedings of the 1st NSF/NIJ conference on Intelligence and security informatics, ISI’03 (Springer, Berlin, 2003), pp. 322–335

    Google Scholar 

  30. P. Bork, L.J. Jensen, C. von Mering, A.K. Ramani, I. Lee, E.M. Marcotte, Protein interaction networks from yeast to human. Curr. Opin. Struct. Biol. 14(3), 292–299 (2004)

    Article  Google Scholar 

  31. U. Brandes, On variants of shortest-path betweenness centrality and their generic computation. Soc. Netw. 30(2), 136–145 (2008)

    Article  Google Scholar 

  32. Z. Butler, A. Rizzi, R. Hollis, Distributed coverage of rectilinear environments, in Proceedings of the Workshop on the Algorithmic Foundations of Robotics (2001)

    Google Scholar 

  33. D. Byman, Why drones work. Foreign Aff. 92(4), 32–43 (2013)

    Google Scholar 

  34. H. Chen, F.-Y. Wang, D. Zeng, Intelligence and security informatics for homeland security: information, communication, and transportation. IEEE Trans. Intell. Transp. Syst. 5(4), 329–341 (2004)

    Article  Google Scholar 

  35. R. Chesney, Military-intelligence convergence and the law of the title 10/title 50 debate. J. Natl. Secur. Law Policy 5, 539 (2012)

    Google Scholar 

  36. D. Chevallier, S. Payandeh, On kinematic geometry of multi-agent manipulating system based on the contact force information, in The Sixth International Conference on Intelligent Autonomous Systems (IAS-6) (2000), pp. 188–195

    Google Scholar 

  37. G. Confessore, P. Reverberi, L. Bianco, A network based model for traffic sensor location with implications on o/d matrix estimates. Transp. Sci. 35(1), 50–60 (2001)

    Article  MATH  Google Scholar 

  38. L. Damianos, J. Ponte, S. Wohlever, F. Reeder, D. Day, G. Wilson, L. Hirschman, Mitap for bio-security: a case study. AI Mag. 23(4), 13–29 (2002)

    Google Scholar 

  39. S. Dolev, Y. Elovici, R. Puzis, P. Zilberman, Incremental deployment of network monitors based on group betweenness centrality. Inf. Proc. Lett. 109, 1172–1176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. d’Onofrio, A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208, 220–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Dudek, M. Jenkin, E. Milios, D. Wilkes, Robotic exploration as graph construction. IEEE Trans. Robot. Autom. 7, 859–865 (1991)

    Article  Google Scholar 

  42. G.M. Erickson, P.J. Currie, B.D. Inouye, A.A. Winn, Tyrannosaur life tables: an example of nonavian dinosaur population biology. Science 313(5784), 213–217 (2006)

    Article  Google Scholar 

  43. M.G. Everett, S.P. Borgatti, The centrality of groups and classes. Math. Soc. 23(3), 181–201 (1999)

    Article  MATH  Google Scholar 

  44. M. Faloutsos, P. Faloutsos, C. Faloutsos, On power-law relationships of the internet topology. SIGCOMM Comput. Comm. Rev. 29(4), 251–262 (1999)

    Article  MATH  Google Scholar 

  45. A. Felner, Y. Shoshani, Y. Altshuler, A.M. Bruckstein, Multi-agent physical a* with large pheromones. J. Auton. Agents Multi-Agent Syst. 12(1), 3–34 (2006)

    Article  Google Scholar 

  46. L.C. Freeman, A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  47. B.P. Gerkey, M.J. Mataric, Sold! market methods for multi-robot control, in IEEE Transactions on Robotics and Automation, Special Issue on Multi-robot Systems (2002)

    Google Scholar 

  48. B. Gompertz, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825)

    Article  Google Scholar 

  49. T. Haynes, S. Sen, Adaptation and Learning in Multi-Agent Systems. Evolving Behavioral Strategies in Predators and Prey, vol. 1042, Lecture Notes in Computer Science (Springer, Berlin, 1986), pp. 113–126

    Google Scholar 

  50. I. Henderson, Civilian intelligence agencies and the use of armed drones, in Yearbook of International Humanitarian Law-2010 (Springer, 2011), pp. 133–173

    Google Scholar 

  51. S. Hettiarachchi, W. Spears, Moving swarm formations through obstacle fields, in International Conference on Artificial Intelligence (2005)

    Google Scholar 

  52. P. Holme, Congestion and centrality in traffic flow on complex networks. Adv. Complex Syst. 6(2), 163–176 (2003)

    Article  MATH  Google Scholar 

  53. P.S. Kanaroglou, M. Jerrett, J. Morrison, B. Beckerman, M. Altaf Arain, N.L. Gilbert, J.R. Brook, Establishing an air pollution monitoring network for intra-urban population exposure assessment: a location-allocation approach. Atmos. Environ. 39(13), 2399–2409 (2005).<ce:title>12th International Symposium, Transport and Air Pollution</ce:title><xocs:full-name>12th International Symposium, Transport and Air Pollution</xocs:full-name>

    Google Scholar 

  54. W. Kerr, D. Spears, Robotic simulation of gases for a surveillance task, in Intelligent Robots and Systems (IROS 2005) (2005), pp. 2905–2910

    Google Scholar 

  55. S. Kirkpatrick, J.J. Schneider, How smart does an agent need to be? Int. J. Mod. Phys. C 16, 139–155 (2005)

    Article  MATH  Google Scholar 

  56. B.O. Koopman, The theory of search ii, target detection. Oper. Res. 4(5), 503–531 (1956)

    Article  MathSciNet  Google Scholar 

  57. B. Koopman, Search and Screening: General Principles with Historical Applications (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  58. R.E. Korf, W. Zhang, Performance of linear-space search algorithms. Artif. Intell. 79(2), 241–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Lerner, Role assignments. Network analysis: Methodological Foundations, LNCS 3418 (Springer, 2005)

    Google Scholar 

  60. H. Lo, W. Lam, Accuracy of o-d estimates from traffic counts. Traffic Eng. Control 31, 358–367 (1990)

    Google Scholar 

  61. F. Lorrain, H.C. White, Structural equivalence of individuals in social networks. J. Math. Sociol. 1(1), 49–80 (1971)

    Article  Google Scholar 

  62. Lt. Kendra, L.B. Cook, The silent force multiplier: the history and role of uavs in warfare, in Aerospace Conference, 2007 IEEE (IEEE, 2007), pp. 1–7

    Google Scholar 

  63. H.S. Mahmassani, S.M. Eisenman, X. Fei, Sensor coverage and location for real-time traffic prediction in large-scale networks. Transp. Res. Rec. 2039(1), 1–15 (2007)

    Google Scholar 

  64. M.J. Mataric, Designing emergent behaviors: From local interactions to collective intelligence, in Proceedings of the Second International Conference on Simulation of Adaptive Behavior, ed. by J. Meyer, H. Roitblat, S. Wilson (MIT Press, 1992), pp. 432–441

    Google Scholar 

  65. P.M. Morse, G.E. Kimball, Methods of Operations Research (MIT Press, Wiley, New York, 1951)

    MATH  Google Scholar 

  66. A.T. Murray, K. Kim, J.W. Davis, R. Machiraju, R. Parent, Coverage optimization to support security monitoring. Comput. Environ. Urban Syst. 31(2), 133–147 (2007)

    Article  Google Scholar 

  67. Y. Ouyang, X. Li, Reliable sensor deployment for network traffic surveillance. Transp. Res. Part B 45, 218–231 (2011)

    Article  Google Scholar 

  68. K. Passino, M. Polycarpou, D. Jacques, M. Pachter, Y. Liu, Y. Yang, M. Flint, M. Baum, Cooperative Control for Autonomous Air Vehicles, chapter Cooperative Control and Optimization (Kluwer Academic, Boston, 2002)

    Google Scholar 

  69. S. Peeta, C.-H. Chu, S.-R. Hu, Identification of vehicle sensor locations for link-based network traffic applications. Transp. Res. Part B 43(8–9), 873–894 (2009)

    Google Scholar 

  70. J.T.K. Ping, A. Eng Ling, T. Jun Quan, C. Yea Dat, Generic unmanned aerial vehicle (uav) for civilian application-a feasibility assessment and market survey on civilian application for aerial imaging, in 2012 IEEE Conference on Sustainable Utilization and Development in Engineering and Technology (STUDENT) (IEEE, 2012), pp. 289–294

    Google Scholar 

  71. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, A.S. Pentland, Augmented betweenness centrality for environmentally-aware traffic monitoring in transportation networks (2013)

    Google Scholar 

  72. R. Puzis, M. D. Klippel, Y. Elovici, S. Dolev, Optimization of nids placement for protection of intercommunicating critical infrastructures, in EuroISI (2007)

    Google Scholar 

  73. R. Puzis, Y. Elovici, S. Dolev, Fast algorithm for successive computation of group betweenness centrality. Phys. Rev. E 76(5), 056709 (2007)

    Article  MathSciNet  Google Scholar 

  74. R. Puzis, Y. Elovici, S. Dolev, Finding the most prominent group in complex networks. AI Comm. 20, 287–296 (2007)

    MathSciNet  MATH  Google Scholar 

  75. R. Puzis, Y. Altshuler, Y. Elovici, S. Bekhor, Y. Shiftan, A. Pentland, Augmented betweenness centrality for environmentally-aware traffic monitoring in transportation networks. J. Intell. Transp. Syst. 17, 91–105 (2013)

    Article  Google Scholar 

  76. G. Rabideau, T. Estlin, T. Chien, A. Barrett, A comparison of coordinated planning methods for cooperating rovers, in Proceedings of the American Institute of Aeronautics and Astronautics (AIAA) Space Technology Conference (1999)

    Google Scholar 

  77. E. Regev, Y. Altshuler, A.M. Bruckstein, The cooperative cleaners problem in stochastic dynamic environments (2012), arXiv:1201.6322

  78. I. Rekleitis, V. Lee-Shuey, A. Peng Newz, H. Choset, Limited communication, multi-robot team based coverage, in IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  79. P. Rouvinen, Diffusion of digital mobile telephony: are developing countries different? Telecommun. Policy 30(1), 46–63 (2006)

    Article  Google Scholar 

  80. N. Schörnig, Unmanned warfare: towards a neo-interventionist era? in The Armed Forces: Towards a Post-Interventionist Era? (Springer, 2013), pp. 221–235

    Google Scholar 

  81. J. Scott, Social Network Analysis: A Handbook (Sage Publications, London, 2000)

    Google Scholar 

  82. B. Shucker, J.K. Bennett, Target tracking with distributed robotic macrosensors, in Military Communications Conference (MILCOM 2005), vol. 4, pp. 2617–2623 (2005)

    Google Scholar 

  83. C. Solomon, L. Kheifits, Y.J. Gur, S. Bekhor, Intercity person trip tables for nationwide transportation planning in israel obtained from massive cell phone data. Transp. Res. Rec. J Transp. Res. Board 2121, 145–151 (2009)

    Article  Google Scholar 

  84. L. Steels, Cooperation between distributed agents through self-organization, in Decentralized A.I - Proc. first European Workshop on Modeling Autonomous Agents in Multi-Agents world, ed. by Y. DeMazeau, J.P. Muller (Elsevier, 1990), pp. 175–196

    Google Scholar 

  85. R. Stern, R. Puzis, A. Felner, Potential search: a bounded-cost search algorithm, in AAAI 21st International Conference on Automated Planning and Scheduling (ICAPS) (2011)

    Google Scholar 

  86. S.H. Strogatz, Exploring complex networks. Nature 410, 268–276 (2001)

    Google Scholar 

  87. S.M. Thayer, M.B. Dias, B.L. Digney, A. Stentz, B. Nabbe, M. Hebert, Distributed robotic mapping of extreme environments, in Proceedings of SPIE, volume 4195 of Mobile Robots XV and Telemanipulator and Telepresence Technologies VII (2000)

    Google Scholar 

  88. A. Thorndike, Summary of antisubmarine warfare operations in world war ii. Summary report, NDRC Summary Report (1946)

    Google Scholar 

  89. P. Vincent, I. Rubin, A framework and analysis for cooperative search using uav swarms, in ACM Simposium on applied computing (2004)

    Google Scholar 

  90. I.A. Wagner, A.M. Bruckstein, From ants to a(ge)nts: a special issue on ant–robotics. Ann. Math. Artif. Intell. Spec. Issue Ant Robot. 31(1–4), 1–6 (2001)

    Google Scholar 

  91. I.A. Wagner, Y. Altshuler, V. Yanovski, A.M. Bruckstein, Cooperative cleaners: a study in ant robotics. Int. J. Robot. Res. (IJRR) 27(1), 127–151 (2008)

    Article  Google Scholar 

  92. J.G. Wardrop, Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. 1, 325–378 (1952)

    Google Scholar 

  93. S. Wasserman, K. Faust, Social Network Analysis: Methods and Applications (Cambridge University Press, Cambridge, 1994)

    Book  MATH  Google Scholar 

  94. M.P. Wellman, P.R. Wurman, Market-aware agents for a multiagent world. Robot. Auton. Syst. 24, 115–125 (1998)

    Article  Google Scholar 

  95. D.R. White, S.P. Borgatti, Betweenness centrality measures for directed graphs. Soc. Netw. 16, 335–346 (1994)

    Article  Google Scholar 

  96. C. Yang, L. Gan, H. Yang, Models and algorithms for the screen line-based traffic-counting location problems. Comput. Oper. Res. 33(3), 836–858 (2006)

    Article  MATH  Google Scholar 

  97. S.H. Yook, H. Jeong, A.-L. Barabasi, Modeling the internet’s large-scale topology. Proc. Natl. Acad. Sci. 99(21), 13382–13386 (2002)

    Article  Google Scholar 

  98. J. Zhou, H. Yang, Optimal traffic counting locations for origin-destination matrix estimation. Transp. Res. Part B 32(2), 109–126 (1998)

    Article  Google Scholar 

  99. S. Zilberstein, Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73–83 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaniv Altshuler .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Altshuler, Y., Pentland, A., Bruckstein, A.M. (2018). Optimal Dynamic Coverage Infrastructure for Large-Scale Fleets of Reconnaissance UAVs. In: Swarms and Network Intelligence in Search. Studies in Computational Intelligence, vol 729. Springer, Cham. https://doi.org/10.1007/978-3-319-63604-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63604-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63602-3

  • Online ISBN: 978-3-319-63604-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics