Skip to main content

Nano-Enabled Sensing Platforms for Personalized Care

  • Chapter
  • First Online:
Advances in Personalized Nanotherapeutics

Abstract

The present book chapter concerns the recent developments of nano-sensing platforms based biosensors for personalized health care as is currently of prime interest to circumvent the delay in diagnosis. Exploiting the burgeoning traits of nanomaterials i.e. high surface to volume ratio, enhanced electron transfer, extraordinary optical, magnetic, and electrical properties improve chances for the transduction technology development. Efforts have been made to discuss the importance of various nanomaterials used with several techniques i.e. electrochemical, magneto-resistance, localized surface plasmon resonance, surface-enhanced Raman scattering, fluorescence; for biosensor construction towards their applications to personalized health care, which is still a “Holy Grail”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arnold MA, Meyerhoff ME. Recent advances in the development and analytical applications of biosensing probes. Crit Rev Anal Chem. 1988;20(3):149–96.

    Article  CAS  Google Scholar 

  2. Belkin S. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol. 2003;6:206–12.

    Article  CAS  PubMed  Google Scholar 

  3. Eggins BR. Chemical sensors and biosensors. Chichester: Wiley; 2002.

    Google Scholar 

  4. Wilson GS, Gifford R. Biosensors for real-time in vivo measurements. Biosens Bioelectron. 2005;20(12):2388–403.

    Article  CAS  PubMed  Google Scholar 

  5. Wilson JS. Sensor technology handbook. Amsterdam/Boston: Elsevier; 2005.

    Google Scholar 

  6. Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol. 2009;20(1):10–26.

    Article  CAS  PubMed  Google Scholar 

  7. Singh R, Dhand C, Sumana G, Verma R, Sood S, Gupta RK, Malhotra BD. Polyaniline/carbon nanotubes platform for sexually transmitted disease detection. J Mol Recognit. 2010;23(5):472–9.

    Article  CAS  PubMed  Google Scholar 

  8. Malhotra BD, Chaubey A, Singh SP. Prospects of conducting polymers in biosensors. Anal Chim Acta. 2006;578(1):59–74.

    Article  CAS  PubMed  Google Scholar 

  9. Singh R, Mukherjee MD, Sumana D, Gupta RK, Sood S, Malhotra BD. Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens Actuators B. 2014;197:385–404.

    Article  CAS  Google Scholar 

  10. Belluzo MS, Ribone ME, Lagier CM. Assembling amperometric biosensors for clinical diagnostics. Sensors. 2008;8(3):1366–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mozaza SR, López de Aldaa MJ, Marcob MP, Barcelóa D. Biosensors for environmental monitoring: a global perspective. Talanta. 2005;65(2):291–7.

    Google Scholar 

  12. Mulchandani A, Bassi AS. Principles and applications of biosensors for bio-process monitoring and control. Crit Rev Biotechnol. 1995;15(2):105–24.

    Article  CAS  PubMed  Google Scholar 

  13. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R. Advances in biosensors for detection of pathogens in food and water. Enzyme Microb Technol. 2003;32(1):3–13.

    Article  CAS  Google Scholar 

  14. Li S, Simonian A, Chin BA, et al. Electrochem Soc Interface. 2010;19(4):41–6.

    Article  CAS  Google Scholar 

  15. Sharmat A, Rogers RK. Meas Sci Technol. 1994;5:461.

    Article  Google Scholar 

  16. Orazio PD. Biosensors in clinical chemistry. Clin Chim Acta. 2003;334(1-2):41–69.

    Article  PubMed  Google Scholar 

  17. Hunsperger EA, Yoksan S, Buchy P, et al. Evaluation of commercially available diagnostic tests for the detection of dengue virus NS1 antigen and anti-dengue virus IgM antibody. Morrison AC, ed. PLoS Negl Trop Dis. 2014;8(10):e3171.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Salez N, Vabret A, Leruez-Ville M, Andreoletti L, Carrat F, Renois F, et al. Evaluation of four commercial multiplex molecular tests for the diagnosis of acute respiratory infections. PLoS One. 2015;10(6):e0130378.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang L, Peng Z, Guo Y, Porter AL. Characterizing a technology development at the stage of early emerging applications: nanomaterial-enhanced biosensors. Technol Anal Strat Manag. 2011;23(5):527–44.

    Article  Google Scholar 

  20. Bellan LM, Wu D, Langer RS. Current trends in nanobiosensor technology. Nanomed Nanobiotechnol. 2011;3(3):229–46.

    Article  CAS  Google Scholar 

  21. Gooding JJ. Biosensor technology for detecting biological warfare agents: recent progress and future trends. Anal Chim Acta. 2006;559(2):137–51.

    Article  CAS  Google Scholar 

  22. Syam R, Davis KJ, Pratheesh MD, Joseph BS. Biosensors: a novel approach for pathogen detection. VETSCAN. 2012;7(1):14–8.

    Google Scholar 

  23. Belluzo MS, Ribone ME, Lagier CM. Assembling amperometric biosensors for clinical diagnostics. Sensors. 2008;8(3):1366–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kashefi-Kheyrabadi L, Mehrgardi MA, Wiechec E, Turner AP, Tiwari A. Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. Anal Chem. 2014;86(10):4956–60.

    Article  CAS  PubMed  Google Scholar 

  25. Chandra P, Noh HB, Pallela R, Shim YB. Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor. Biosens Bioelectron. 2015;70:418–25.

    Article  CAS  PubMed  Google Scholar 

  26. Blind M, Blank M. Aptamer selection technology and recent advances. Mol Ther Nucleic Acids. 2015;4:e223.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Noh HB, Chandra P, Moon JO, Shim YB. In vivo detection of glutathione disulfide and oxidative stress monitoring using a biosensor. Biomaterials. 2012;33(9):2600–7.

    Article  CAS  PubMed  Google Scholar 

  28. Yadav SK, Agrawal B, Chandra P, Goyal RN. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer. Biosens Bioelectron. 2014;15(55):337–42.

    Article  Google Scholar 

  29. Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW, et al. Using buoyant mass to measure the growth of single cells. NatMeth. 2010;7(5):387–90.

    CAS  Google Scholar 

  30. von Muhlen MG, Brault ND, Knudsen SM, Jiang S, Manalis SR. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem. 2010;82(5):1905–10.

    Article  Google Scholar 

  31. Barton RA, Ilic B, Verbridge SS, Cipriany BR, Parpia JM, Craighead HG. Fabrication of a nanomechanical mass sensor containing a nanofluidic channel. Nano Lett. 2010;10(6):2058–63.

    Article  CAS  PubMed  Google Scholar 

  32. Kaushik A, Vabbina PK, Atluri V, Shah PK, Vashist A, Jayant RD, Yandart A, Nair M. Electrochemical monitoring-on-chip (E-MoC) of HIV-infection in presence of cocaine and therapeutics. Biosens Bioelectron. 2016;86:426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaushik A, Tiwari S, Jayant RD, Vashist A, Nikkhah-Moshaie R, El-Hage N, Nair M. Electrochemical biosensors for early stage Zika diagnostics. Trends Biotechnol. 2016;35:308–17. doi:10.1016/j.tibtech.2016.10.001.

    Article  PubMed  Google Scholar 

  34. Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosens Bioelectron. 2016;80:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaushik A, Tiwari S, Jayant RD, Marty A, Nair M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens Bioelectron. 2016;75:254–72.

    Article  CAS  PubMed  Google Scholar 

  36. Kaushik A, Dixit CK. Nanobiotechnology for sensing applications: from lab to field, vol. 104. Oakville, ON: Apple Academic; 2016. Isbn:9781771883283., CAT# N11612.

    Google Scholar 

  37. Dixit CK, Kaushik A. Microfluidics for biologists—fundamentals and applications. Berlin: Springer; 2016.

    Google Scholar 

  38. Luppa PB, Muller C, Schlichtiger A. Point-of-care testing (POCT): current techniques and future perspectives. TrAC Trends Anal Chem. 2011;30(6):887–98.

    Article  CAS  Google Scholar 

  39. Brock G, Castellanos-Rizaldos E, Hu L, Coticchia C, Skog J. Liquid biopsy for cancer screening, patient stratification and monitoring. Transl Cancer Res. 2015;4(3):280–90.

    CAS  Google Scholar 

  40. Girotti MR, Gremel G, Lee R, Galvani E, Rothwell D, Viros A, Mandal AK, et al. Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov. 2016;6(3):286–99.

    Article  CAS  PubMed  Google Scholar 

  41. Sattler IN, Klaus D. History nanoparticles: Reiss, Gunter; Hutten, Andreas. “Magnetic nanoparticles”. In: Handbook of nanophysics: nanoparticles and quantum dots. Boca Raton: CRC; 2010. p. 2–1. Isbn:9781420075458.

    Google Scholar 

  42. Singh R, Sharma A, Hong S, Jang J. Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1. Analyst. 2014;139(21):5415–21.

    Article  CAS  PubMed  Google Scholar 

  43. Luo X, Morrin A, Killard A, Smyth M. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18:319–26.

    Article  CAS  Google Scholar 

  44. Grabar KC, Allison KJ, Baker BE, Bright RM, Brown KR, Freeman RG, Fox P, Keating CD, Musick MD, Natan MJ. Two-dimensional arrays of colloidal gold particles: a flexible approach to macroscopic metal surfaces. Langmuir. 1996;12:2353–61.

    Article  CAS  Google Scholar 

  45. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science. 2003;299:1877–81.

    Article  CAS  PubMed  Google Scholar 

  46. Raj CR, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem. 2003;543:127–33.

    Article  CAS  Google Scholar 

  47. Singh R, Prasad R, Sumana G, Arora K, Sood S, Gupta RK, et al. STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens Bioelectron. 2009;24(7):2232–8.

    Article  CAS  PubMed  Google Scholar 

  48. Singh R, Matharu Z, Srivastava AK, Sood S, Gupta RK, Malhotra BD. Nanostructured platform for the detection of Neisseria gonorrhoeae using electrochemical impedance spectroscopy and differential pulse voltammetry. Microchim Acta. 2012;177(1-2):201–10.

    Article  CAS  Google Scholar 

  49. Singh R, Verma R, Sumana G, Srivastava AK, Sood S, Gupta RK, et al. Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. Bioelectrochemistry. 2012;86:30–7.

    Article  CAS  PubMed  Google Scholar 

  50. Singh R, Verma R, Kaushik A, Sumana G, Sood S, Gupta RK, et al. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for detection of Neisseria gonorrhoeae causing sexually transmitted disease. Biosens Bioelectron. 2011;26(6):2967–74.

    Article  CAS  PubMed  Google Scholar 

  51. Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B. 2008;134(2):755–60.

    Article  CAS  Google Scholar 

  52. Pal S, Alocilja EC. Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosens Bioelectron. 2009;24(5):1437–44.

    Article  CAS  PubMed  Google Scholar 

  53. Ansari AA, Singh R, Sumana G, Malhotra BD. Sol–gel derived nano-structured zinc oxide film for sexually transmitted disease sensor. Analyst. 2009;134(5):997–1002.

    Article  CAS  PubMed  Google Scholar 

  54. Tran LD, Nguyen BH, Hieu NV, Tran HV, Nguyen HL, Nguyen PX. Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Mater Sci Eng C. 2011;31(2):477–85.

    Article  CAS  Google Scholar 

  55. Wisitsoraat A, Sritongkham P, Karuwan C, Phokharatkul D, Maturos T, Tuantranont A. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens Bioelectron. 2010;26(4):1514–20.

    Article  CAS  PubMed  Google Scholar 

  56. Hall DA, Nielsen CH, Osterfeld SJ, Yu H, Mach KE, Wilson RJ, Murmann B, Liao JC, Gambhir SS, Wang SX, Gaster RS. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat Med. 2009;15:1327–32.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barnas J, Fuss A, CamleyGrunberg REP, Zinn W. Novel magnetoresistance effect in layered magnetic structures: theory and experiment. Phys Rev B. 1990;42:8110–20.

    Article  CAS  Google Scholar 

  58. Krishna VD, Wu K, Perez AM, Wang J-P, Giant VD. Magnetoresistance-based biosensor for detection of influenza a virus’. Front Microbiol. 2016;7:400.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Srinivasan B, Li Y, Jing Y, Xing C, Slaton J, Wang J-P. A three-layer competition-based giant magnetoresistive assay for direct quantification of endoglin from human urine. Anal Chem. 2011;83:2996–3002.

    Article  CAS  PubMed  Google Scholar 

  60. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV. Noble metal nanoparticles for biosensing applications. Sensors. 2012;12:1657–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A, Scully PT, Nehl CL, Hafner JH. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano. 2008;2(4):687–92.

    Article  CAS  PubMed  Google Scholar 

  62. Wilcoxon J. Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B. 2009;113:2647–56.

    Article  CAS  PubMed  Google Scholar 

  63. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.

    Article  CAS  PubMed  Google Scholar 

  64. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–30.

    Article  CAS  PubMed  Google Scholar 

  65. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123:1599–603.

    Article  CAS  PubMed  Google Scholar 

  66. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 2000;122:9071–7.

    Article  CAS  Google Scholar 

  67. Yang X, Wang Q, Wang K, Tan W, Li H. Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles. Biosens Bioelectron. 2007;22:1106–10.

    Article  CAS  PubMed  Google Scholar 

  68. Li G, Li X, Yang M, Chen M-M, Chen L-C, Xiong X-L. A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemiamodified albumin. Sensors. 2013;13(10):12794–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi JW, Kang DY, Jang YH, Kim HH, Min J, Oh BK. Ultra-sensitive surface plasmon resonance based immunosensor for prostate-specific antigen using gold nanoparticle-antibody complex. Colloids Surf A Physicochem Eng Asp. 2008;313–314:655–9.

    Article  Google Scholar 

  70. Yuan J, Duan R, Yang H, Luo X, Xi M. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int J Nanomedicine. 2012;7:2921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lee JH, Kim BC, Oh BK, Choi JW. Highly sensitive localized surface plasmon resonance immunosensor for labelfree detection of HIV-1. Nanomedicine. 2013;9(7):1018–26.

    Article  CAS  PubMed  Google Scholar 

  72. Li G, Li X, Yang M, Chen MM, Chen LC, Xiong XL. A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of ischemia-modified albumin. Sensors. 2013;13:12794–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fleishmann M, Hendra PJ, Mcquillan AJ. Chem Phys Lett. 1974;26:163.

    Article  Google Scholar 

  74. Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering. J Phys Condens Matter. 1992;4:1143–212.

    Article  CAS  Google Scholar 

  75. Nie SM, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102–6.

    Article  CAS  PubMed  Google Scholar 

  76. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS. Single molecule detection using surface enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78(9):1667–70.

    Article  CAS  Google Scholar 

  77. Krug JT, Wang GD, Emory SR, Nie SM. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J Am Chem Soc. 1999;121(39):9208–14.

    Article  CAS  Google Scholar 

  78. Emory SR, Nie S. Screening and enrichment of metal nanoparticles with novel optical properties. J Phys Chem B. 1998;102(3):493–7.

    Article  CAS  Google Scholar 

  79. Harris DC. Applications of spectrophotometry. In: Quantitative Chemical Analysis. 8th ed. New York: W. H. Freeman and Co; 2010. p. 419–44.

    Google Scholar 

  80. Jennings TL, Singh MP, Strouse GF. Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity. J Am Chem Soc. 2006;128:5462–7.

    Article  CAS  PubMed  Google Scholar 

  81. Griffin J, Singh AK, Senapati D, Rhodes P, Mitchell K, Robinson B, Yu E, Ray PC. Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA. Chemistry. 2009;15:342–51.

    Article  CAS  PubMed  Google Scholar 

  82. Ray PC, Darbha GK, Ray A, Walker J, Hardy W. Gold nanoparticle based FRET for DNA detection. Plasmonics. 2007;2:173–83.

    Article  CAS  Google Scholar 

  83. Dubertret B, Calame M, Libchaber AJ. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol. 2001;19:365–70.

    Article  CAS  PubMed  Google Scholar 

  84. Benia V, Hayesa K, Lerga MT, O’Sullivan CK. Development of a gold nano-particle-based fluorescent molecular beacon for detection of cystic fibrosis associated mutation. Biosens Bioelectron. 2010;26:307–13.

    Article  Google Scholar 

  85. Wang W, Chen C, Qian M, Zhao XS. Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem. 2008;373:213–9.

    Article  CAS  PubMed  Google Scholar 

  86. Guirgis BS, Cunha CS, Gomes I, Cavadas M, Silva I, Doria G, Blatch GL, Baptista PV, Pereira E, Azzazy HM, Mota MM, Prudêncio M, Franco R. Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal Bioanal Chem. 2012;402(3):1019–27.

    Article  CAS  PubMed  Google Scholar 

  87. Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booye FP, Melvin T. Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun. 2005;(25):3201–3.

    Google Scholar 

  88. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc. 2005;127:3270–1.

    Article  CAS  PubMed  Google Scholar 

  89. Chang E, Miller JS, Sun J, Yu WW, Colvin VL, Drezek R, West JL. Protease-activated quantum dot probes. Biochem Biophys Res Commun. 2005;334:1317–21.

    Article  CAS  PubMed  Google Scholar 

  90. Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed. 2009;48:8670–4.

    Article  CAS  Google Scholar 

  91. Zhang Y, Wang L, Tian J, Li H, Luo Y, Sun X. Ag@poly(m-phenylenediamine) core-shell nanoparticles for highly selective, multiplex nucleic acid detection. Langmuir. 2011;27:2170–5.

    Article  PubMed  Google Scholar 

  92. Zhang J, Wang L, Zang H, Boey F, Song S, Fan C. Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small. 2010;6:201–4.

    Article  CAS  PubMed  Google Scholar 

  93. Huang Y, Zhao S, Liang H, Chen ZF, Liu YM. Multiplex detection of endonucleases by using a multicolor gold nanobeacon. Chem A Eur J. 2011;17:7313–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Department of Bioproducts and Biosystems Engineering, University of Minnesota, United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Mohan, C.C., Roy, A.C. (2017). Nano-Enabled Sensing Platforms for Personalized Care. In: Kaushik, A., Jayant, R., Nair, M. (eds) Advances in Personalized Nanotherapeutics . Springer, Cham. https://doi.org/10.1007/978-3-319-63633-7_12

Download citation

Publish with us

Policies and ethics