Skip to main content

Optimal Distributed Generation Allocation Using Quantum Inspired Particle Swarm Optimization

  • Chapter
  • First Online:
Quantum Computing:An Environment for Intelligent Large Scale Real Application

Part of the book series: Studies in Big Data ((SBD,volume 33))

Abstract

Distributed Generation (DG), with respect to its ability in utilizing the alternative resources of energy, provides a promising future for power generation in electrical networks. Distributed generators contribution to the power systems includes improvement in energy efficiency and power quality to reliability and security. These benefits are only achievable with optimal allocation of distributed resources that considers the objective function, constraints, and employs a suitable optimization algorithm. In this chapter, a quantum inspired computational intelligence is exercised for the optimal allocation of distributed generators. The fact that most of power system optimization problems, when modelled accurately, are of non-convex and sometimes discrete nature has encouraged many researchers to develop optimization techniques to overcome such difficulties. The basic Particle Swarm Optimization (PSO) is one of the most favored optimization techniques with many attractive features. Early experiments of employing PSO in many applications in power systems have indicated its promising potential. Consequently, the more advanced alternatives of this algorithm such as Quantum behaved PSO (Q-PSO) may show the same or even better performance in power system problems. The aforementioned algorithm has already been employed for different optimization objectives in power systems such as: short-term non-convex economic scheduling, unit commitment problems, loss of power minimization, economic load dispatch, smart building energy management and power system operations. Nevertheless, the algorithm has never been used for optimal allocation of distributed generation units. In this chapter the above problem will be solved with a quantum behaved particle swarm optimization algorithm. The chapter will be started with an introduction to the optimal allocation of DG then the power system, including the DG units will be modeled. On the next step the Q-PSO will be adopted for the optimal allocation. Finally, the results and discussions will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, T., Andersson, G., Söder, L.: Distributed generation: a definition. Electr. Power Syst. Res. 57(3), 195–204 (2001)

    Article  Google Scholar 

  2. Chiradeja, P., Ramakumar, R.: An approach to quantify the technical benefits of distributed generation. IEEE Trans. Energy Convers. 19(4), 764–773 (2004)

    Article  Google Scholar 

  3. El-Khattam, W., Salama, M.M.: Distributed generation technologies, definitions and benefits. Electr. Power Syst. Res. 71(2), 119–128 (2004)

    Article  Google Scholar 

  4. Pepermans, G., Driesen, J., Haeseldonckx, D., Belmans, R., Dhaeseleer, W.: Distributed generation: definition, benefits and issues. Energy Policy 33(6), 787–798 (2005)

    Article  Google Scholar 

  5. Hung, D.Q., Mithulananthan, N., Bansal, R.: An optimal investment planning framework for multiple distributed generation units in industrial distribution systems. Appl. Energy 124, 62–72 (2014)

    Article  Google Scholar 

  6. HA, M.P., Huy, P.D., Ramachandaramurthy, V.K.: A review of the optimal allocation of distributed generation: objectives, constraints, methods, and algorithms. Renew. Sustain. Energy Rev. (2016)

    Google Scholar 

  7. Walling, R., Saint, R., Dugan, R.C., Burke, J., Kojovic, L.A.: Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 23(3), 1636–1644 (2008)

    Article  Google Scholar 

  8. Ault, G.W., McDonald, J.R.: Planning for distributed generation within distribution networks in restructured electricity markets. IEEE Power Eng. Rev. 20(2), 52–54 (2000)

    Article  Google Scholar 

  9. Dugan, R.C., McDermott, T.E., Ball, G.J.: Planning for distributed generation. IEEE Ind. Appl. Mag. 7(2), 80–88 (2001)

    Article  Google Scholar 

  10. Rau, N.S., Wan, Y.-H.: Optimum location of resources in distributed planning. IEEE Trans. Power Syst. 9(4), 2014–2020 (1994)

    Article  Google Scholar 

  11. Padma Lalitha, M., Veera Reddy, V., Sivarami Reddy, N.: Application of fuzzy and abc algorithm for dg placement for minimum loss in radial distribution system. Iran. J. Electr. Electron. Eng. 6(4), 248–257 (2010)

    Google Scholar 

  12. Popović, D., Greatbanks, J., Begović, M., Pregelj, A.: Placement of distributed generators and reclosers for distribution network security and reliability. Int. J. Electr. Power Energy Syst. 27(5), 398–408 (2005)

    Article  Google Scholar 

  13. Ochoa, L.F., Dent, C.J., Harrison, G.P.: Distribution network capacity assessment: variable dg and active networks. IEEE Trans. Power Syst. 25(1), 87–95 (2010)

    Article  Google Scholar 

  14. Dent, C.J., Ochoa, L.F., Harrison, G.P., Bialek, J.W.: Efficient secure ac opf for network generation capacity assessment. IEEE Trans. Power Syst. 25(1), 575–583 (2010)

    Article  Google Scholar 

  15. Kumar, A., Gao, W.: Optimal distributed generation location using mixed integer non-linear programming in hybrid electricity markets. IET Gener. Trans. Distrib. 4(2), 281–298 (2010)

    Article  Google Scholar 

  16. López-Lezama, J.M., Padilha-Feltrin, A., Contreras, J., Muñoz, J.I.: Optimal contract pricing of distributed generation in distribution networks. IEEE Trans. Power Syst. 26(1), 128–136 (2011)

    Article  Google Scholar 

  17. Ghosh, S., Ghoshal, S.P., Ghosh, S.: Optimal sizing and placement of distributed generation in a network system. Int. J. Electr. Power Energy Syst. 32(8), 849–856 (2010)

    Article  Google Scholar 

  18. Wang, D.T.-C., Ochoa, L.F., Harrison, G.P.: Dg impact on investment deferral: network planning and security of supply. IEEE Trans. Power Syst. 25(2), 1134–1141 (2010)

    Article  Google Scholar 

  19. Atwa, Y., El-Saadany, E., Salama, M., Seethapathy, R.: Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst. 25(1), 360–370 (2010)

    Article  Google Scholar 

  20. Khodr, H., Silva, M.R., Vale, Z., Ramos, C.: A probabilistic methodology for distributed generation location in isolated electrical service area. Electr. Power Syst. Res. 80(4), 390–399 (2010)

    Article  Google Scholar 

  21. Dent, C.J., Ochoa, L.F., Harrison, G.P.: Network distributed generation capacity analysis using opf with voltage step constraints. IEEE Trans. Power Syst. 25(1), 296–304 (2010)

    Article  Google Scholar 

  22. Keane, A., O’Malley, M.: Optimal allocation of embedded generation on distribution networks. IEEE Trans. Power Syst. 20(3), 1640–1646 (2005)

    Article  Google Scholar 

  23. Kim, J., Nam, S., Park, S., Singh, C.: Dispersed generation planning using improved hereford ranch algorithm. Electr. Power Syst. Res. 47(1), 47–55 (1998)

    Article  Google Scholar 

  24. Gandomkar, M., Vakilian, M., Ehsan, M.: A combination of genetic algorithm and simulated annealing for optimal dg allocation in distribution networks. In: Canadian Conference on Electrical and Computer Engineering, 2005, pp. 645–648. IEEE (2005)

    Google Scholar 

  25. Acharya, N., Mahat, P., Mithulananthan, N.: An analytical approach for dg allocation in primary distribution network. Int. J. Electr. Power Energy Syst. 28(10), 669–678 (2006)

    Article  Google Scholar 

  26. Murty, V., Kumar, A.: Optimal placement of dg in radial distribution systems based on new voltage stability index under load growth. Int. J. Electr. Power Energy Syst. 69, 246–256 (2015)

    Article  Google Scholar 

  27. Borges, C.L., Falcao, D.M.: Optimal distributed generation allocation for reliability, losses, and voltage improvement. Int. J. Electr. Power Energy Syst. 28(6), 413–420 (2006)

    Article  Google Scholar 

  28. Vatani, M., Alkaran, D.S., Sanjari, M.J., Gharehpetian, G.B.: Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods. IET Gener. Transm. Distrib. 10(1), 66–72 (2016)

    Article  Google Scholar 

  29. Nguyen, T.T., Truong, A.V., Phung, T.A.: A novel method based on adaptive cuckoo search for optimal network reconfiguration and distributed generation allocation in distribution network. Int. J. Electr. Power Energy Syst. 78, 801–815 (2016)

    Article  Google Scholar 

  30. Kowsalya, M., et al.: Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 15, 58–65 (2014)

    Article  Google Scholar 

  31. Pesaran, M., Mohd Zin, A.A., Khairuddin, A., Shariati, O.: Optimal sizing and siting of distributed generators by a weighted exhaustive search. Electr. Power Compon. Syst. 42(11), 1131–1142 (2014)

    Article  Google Scholar 

  32. Nazari-Heris, M., Mohammadi-Ivatloo, B.: Application of heuristic algorithms to optimal pmu placement in electric power systems: An updated review. Renew. Sustain. Energy Rev. 50, 214–228 (2015)

    Article  Google Scholar 

  33. Nazari-Heris, M., Mohammadi-Ivatloo, B., Gharehpetian, G.: Short-term scheduling of hydro-based power plants considering application of heuristic algorithms: a comprehensive review. Renew. Sustain. Energy Rev. 74, 116–129 (2017)

    Article  Google Scholar 

  34. Mahdi, F.P., Vasant, P., Rahman, M.M., Abdullah-Al-Wadud, M., Watada, J., Kallimani, V.: Quantum particle swarm optimization for multiobjective combined economic emission dispatch problem using cubic criterion function. In: 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), pp. 1–5. IEEE (2017)

    Google Scholar 

  35. Mohammadi-Ivatloo, B., Moradi-Dalvand, M., Rabiee, A.: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients. Electr. Power Syst. Res. 95, 9–18 (2013)

    Article  Google Scholar 

  36. Yuan, X., Wang, L., Yuan, Y.: Application of enhanced pso approach to optimal scheduling of hydro system. Energy Convers. Manag. 49(11), 2966–2972 (2008)

    Article  Google Scholar 

  37. Yare, Y., Venayagamoorthy, G.K., Aliyu, U.: Optimal generator maintenance scheduling using a modified discrete pso. IET Gener. Transm. Distrib. 2(6), 834–846 (2008)

    Article  Google Scholar 

  38. Mohammadi, M., Hosseinian, S., Gharehpetian, G.: Optimization of hybrid solar energy sources/wind turbine systems integrated to utility grids as microgrid (mg) under pool/bilateral/hybrid electricity market using pso. Solar Energy 86(1), 112–125 (2012)

    Article  Google Scholar 

  39. Yu, X.-M., Xiong, X.-Y., Wu, Y.-W.: A pso-based approach to optimal capacitor placement with harmonic distortion consideration. Electr. Power Syst. Res. 71(1), 27–33 (2004)

    Article  Google Scholar 

  40. Krueasuk, W., Ongsakul, W.: Optimal placement of distributed generation using particle swarm optimization. In: Proceedings of Power Engineering Conference in Australasian Universities, Australia. Citeseer (2006)

    Google Scholar 

  41. Moradi, A., Fotuhi-Firuzabad, M.: Optimal switch placement in distribution systems using trinary particle swarm optimization algorithm. IEEE Trans. Power Deliv. 23(1), 271–279 (2008)

    Article  Google Scholar 

  42. Saravanan, M., Slochanal, S.M.R., Venkatesh, P., Abraham, P.S.: Application of pso technique for optimal location of facts devices considering system loadability and cost of installation. In: The 7th International Power Engineering Conference, IPEC 2005, pp. 716–721. IEEE (2005)

    Google Scholar 

  43. Zhao, B., Guo, C., Cao, Y.: A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Trans. Power Syst. 20(2), 1070–1078 (2005)

    Article  Google Scholar 

  44. Moghaddas Tafreshi, S., Hakimi, S.: Optimal sizing of a stand-alone hybrid power system via particle swarm optimization (pso). In: International Power Engineering Conference, IPEC 2007, pp. 960–965. IEEE (2007)

    Google Scholar 

  45. Al-Kazemi, B., Mohan, C.: Discrete multi-phase particle swarm optimization. In: Information Processing with Evolutionary Algorithms, pp. 305–327. Springer (2005)

    Google Scholar 

  46. Yang, S., Wang, M.: A quantum particle swarm optimization. In: Congress on Evolutionary Computation, et al.: CEC2004, vol. 1, pp. 320–324. IEEE (2004)

    Google Scholar 

  47. Moore, P., Venayagamoorthy, G.K.: Evolving combinational logic circuits using a hybrid quantum evolution and particle swarm inspired algorithm. In: 2005 NASA/DoD Conference on Evolvable Hardware, 2005, pp. 97–102. Proceedings. IEEE (2005)

    Google Scholar 

  48. Sun, J., Feng, B., Xu, W.: Particle swarm optimization with particles having quantum behavior. In: Congress on Evolutionary Computation, CEC2004, vol. 1, pp. 325–331. IEEE (2004)

    Google Scholar 

  49. Sun, J., Xu, W., Feng, B.: A global search strategy of quantum-behaved particle swarm optimization. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 111–116. IEEE (2004)

    Google Scholar 

  50. Sun, J., Lai, C.-H., Wu, X.-J.: Particle Swarm Optimisation: Classical and Quantum Perspectives. CRC Press (2011)

    Google Scholar 

  51. Lu, S., Sun, C., Lu, Z.: An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling. Energy Convers. Manag. 51(3), 561–571 (2010)

    Article  MathSciNet  Google Scholar 

  52. dos Santos Coelho, L., Mariani, V.C.: Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Convers. Manag. 49(11), 3080–3085 (2008)

    Google Scholar 

  53. Jeong, Y.-W., Park, J.-B., Jang, S.-H., Lee, K.Y.: A new quantum-inspired binary pso: application to unit commitment problems for power systems. IEEE Trans. Power Syst. 25(3), 1486–1495 (2010)

    Article  Google Scholar 

  54. Wang, J., Liu, Z., Lu, P.: Electricity load forecasting based on adaptive quantum-behaved particle swarm optimization and support vector machines on global level. In: International Symposium on Computational Intelligence and Design, ISCID’08, vol. 1, pp. 233–236. IEEE (2008)

    Google Scholar 

  55. Tian, S., Tuanjie, L.: Short-term load forecasting based on rbfnn and qpso. In: Power and Energy Engineering Conference, APPEEC 2009. Asia-Pacific. IEEE (2009)

    Google Scholar 

  56. Badawy, R., Heßler, A., Albayrak, S., Hirsch, B., Yassine, A.: Quantum-inspired evolution for smart building energy management in future power networks. In: EngOpt2014, p. 226 (2014)

    Google Scholar 

  57. Esmin, A.A., Lambert-Torres, G., De Souza, A.Z.: A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 20(2), 859–866 (2005)

    Article  Google Scholar 

  58. Ibrahim, A.A., Mohamed, A., Shareef, H., Ghoshal, S.P.: An effective power quality monitor placement method utilizing quantum-inspired particle swarm optimization. In: 2011 International Conference on Electrical Engineering and Informatics (ICEEI), pp. 1–6. IEEE (2011)

    Google Scholar 

  59. Sun, J., Fang, W., Palade, V., Wu, X., Xu, W.: Quantum-behaved particle swarm optimization with gaussian distributed local attractor point. Appl. Math. Comput. 218(7), 3763–3775 (2011)

    MATH  Google Scholar 

  60. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  61. Metropolis, N., Ulam, S.: The monte carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Pesaran Hajiabbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Nazari-Heris, M., Madadi, S., Pesaran Hajiabbas, M., Mohammadi-Ivatloo, B. (2018). Optimal Distributed Generation Allocation Using Quantum Inspired Particle Swarm Optimization. In: Hassanien, A., Elhoseny, M., Kacprzyk, J. (eds) Quantum Computing:An Environment for Intelligent Large Scale Real Application . Studies in Big Data, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-63639-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63639-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63638-2

  • Online ISBN: 978-3-319-63639-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics