Skip to main content

Genetics of Arteriovenous Malformations

  • Chapter
  • First Online:
Brain Arteriovenous Malformations

Abstract

Arteriovenous malformations (AVMs) and arteriovenous fistulas (AVFs) are abnormal fast-flow connections between arterial and venous circulation, without a normal intervening capillary bed. They are congenital developmental lesions seen in various sites of the body. Pathogenesis is still largely unknown, and no specific biomarkers have been identified to study e.g. evolution of lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fleetwood IG, Steinberg GK. Arteriovenous malformations. Lancet. 2002;359(9309):863–73.

    Article  PubMed  Google Scholar 

  2. Sturge WA. On hemianaesthesia of special and general sensation. Br Med J. 1878;1(909):783–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J Neurosurg. 2013;118(2):437–43.

    Article  PubMed  Google Scholar 

  4. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat. 2008;29(7):959–65.

    Article  CAS  PubMed  Google Scholar 

  5. Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, et al. Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics. 2015;136(1):e203–14.

    Article  PubMed  Google Scholar 

  6. McDonald J, Bayrak-Toydemir P, Pyeritz RE. Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med. 2011;13(7):607–16.

    Article  PubMed  Google Scholar 

  7. Plauchu H, de Chadarevian JP, Bideau A, Robert JM. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am J Med Genet. 1989;32(3):291–7.

    Article  CAS  PubMed  Google Scholar 

  8. Atri D, Larrivee B, Eichmann A, Simons M. Endothelial signaling and the molecular basis of arteriovenous malformation. Cell Mol Life Sci. 2013; 71:867–83.

    Google Scholar 

  9. Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn. 2015;244(3):391–409.

    Article  CAS  PubMed  Google Scholar 

  10. Shovlin CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev. 2010;24(6):203–19.

    Article  CAS  PubMed  Google Scholar 

  11. Eerola I, Boon LM, Mulliken JB, Burrows PE, Dompmartin A, Watanabe S, et al. Capillary malformation-arteriovenous malformation, a new clinical and genetic disorder caused by RASA1 mutations. Am J Hum Genet. 2003;73(6):1240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou XP, Marsh DJ, Hampel H, Mulliken JB, Gimm O, Eng C. Germline and germline mosaic PTEN mutations associated with a Proteus-like syndrome of hemihypertrophy, lower limb asymmetry, arteriovenous malformations and lipomatosis. Hum Mol Genet. 2000;9(5):765–8.

    Article  CAS  PubMed  Google Scholar 

  13. Amyere M, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation–arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation. 2017; doi:10.1161/CIRCULATIONAHA.116.026886.

  14. Comi AM. Update on Sturge-Weber syndrome: diagnosis, treatment, quantitative measures, and controversies. Lymphat Res Biol. 2007;5(4):257–64.

    Article  PubMed  Google Scholar 

  15. Piram M, Lorette G, Sirinelli D, Herbreteau D, Giraudeau B, Maruani A. Sturge-Weber syndrome in patients with facial port-wine stain. Pediatr Dermatol. 2012;29(1):32–7.

    Article  PubMed  Google Scholar 

  16. Shirley MD, Tang H, Gallione CJ, Baugher JD, Frelin LP, Cohen B, et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med. 2013;368(21):1971–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas AC, Zeng Z, Riviere JB, O’Shaughnessy R, Al-Olabi L, St-Onge J, et al. Mosaic activating mutations in GNA11 and GNAQ are associated with phakomatosis pigmentovascularis and extensive dermal melanocytosis. J Invest Dermatol. 2016;136(4):770–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eerola I, Boon LM, Watanabe S, Grynberg H, Mulliken JB, Vikkula M. Locus for susceptibility for familial capillary malformation (‘port-wine stain’) maps to 5q. Eur J Hum Genet. 2002;10(6):375–80.

    Article  CAS  PubMed  Google Scholar 

  19. Thiex R, Mulliken JB, Revencu N, Boon LM, Burrows PE, Cordisco M, et al. A novel association between RASA1 mutations and spinal arteriovenous anomalies. AJNR Am J Neuroradiol. 2010;31(4):775–9.

    Article  CAS  PubMed  Google Scholar 

  20. Revencu N, Boon LM, Mendola A, Cordisco MR, Dubois J, Clapuyt P, et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformation-arteriovenous malformation. Hum Mutat. 2013;34(12):1632–41.

    Article  CAS  PubMed  Google Scholar 

  21. Boon LM, Mulliken JB, Vikkula M. RASA1: variable phenotype with capillary and arteriovenous malformations. Curr Opin Genet Dev. 2005;15(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kawasaki J, Aegerter S, Fevurly RD, Mammoto A, Mammoto T, Sahin M, et al. RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest. 2014;124(6):2774–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henkemeyer M, Rossi DJ, Holmyard DP, Puri MC, Mbamalu G, Harpal K, et al. Vascular system defects and neuronal apoptosis in mice lacking ras GTPase-activating protein. Nature. 1995;377(6551):695–701.

    Article  CAS  PubMed  Google Scholar 

  24. Burrows PE, Gonzalez-Garay ML, Rasmussen JC, Aldrich MB, Guilliod R, Maus EA, et al. Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man. Proc Natl Acad Sci U S A. 2013;110(21):8621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meadows KN, Bryant P, Pumiglia K. Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem. 2001;276(52):49289–98.

    Article  CAS  PubMed  Google Scholar 

  26. Meadows KN, Bryant P, Vincent PA, Pumiglia KM. Activated Ras induces a proangiogenic phenotype in primary endothelial cells. Oncogene. 2004;23(1):192–200.

    Article  CAS  PubMed  Google Scholar 

  27. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 1999;13(3):295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell. 1998;93(5):741–53.

    Article  CAS  PubMed  Google Scholar 

  29. Bai J, Wang YJ, Liu L, Zhao YL. Ephrin B2 and EphB4 selectively mark arterial and venous vessels in cerebral arteriovenous malformation. J Int Med Res. 2014;42(2):405–15.

    Article  PubMed  CAS  Google Scholar 

  30. Lin FJ, Tsai MJ, Tsai SY. Artery and vein formation: a tug of war between different forces. EMBO Rep. 2007;8(10):920–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres AC. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ. 2014;56(4):255–75.

    Article  CAS  PubMed  Google Scholar 

  32. Gerety SS, Wang HU, Chen ZF, Anderson DJ. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell. 1999;4(3):403–14.

    Article  CAS  PubMed  Google Scholar 

  33. Holland SJ, Gale NW, Gish GD, Roth RA, Songyang Z, Cantley LC, et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 1997;16(13):3877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Limaye N, Wouters V, Uebelhoer M, Tuominen M, Wirkkala R, Mulliken JB, et al. Somatic mutations in angiopoietin receptor gene TEK cause solitary and multiple sporadic venous malformations. Nat Genet. 2009;41(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  35. Amyere M, Aerts V, Brouillard P, McIntyre BA, Duhoux FP, Wassef M, et al. Somatic uniparental isodisomy explains multifocality of glomuvenous malformations. Am J Hum Genet. 2013;92(2):188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Macmurdo CF, Wooderchak-Donahue W, Bayrak-Toydemir P, Le J, Wallenstein MB, Milla C, et al. RASA1 somatic mutation and variable expressivity in capillary malformation/arteriovenous malformation (CM/AVM) syndrome. Am J Med Genet A. 2016;170(6):1450–4.

    Article  CAS  PubMed  Google Scholar 

  37. Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet. 2009;17(7):860–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Porteous ME, Burn J, Proctor SJ. Hereditary haemorrhagic telangiectasia: a clinical analysis. J Med Genet. 1992;29(8):527–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, et al. Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):42–53.

    Article  CAS  PubMed  Google Scholar 

  40. Hosman AE, Devlin HL, Silva BM, Shovlin CL. Specific cancer rates may differ in patients with hereditary haemorrhagic telangiectasia compared to controls. Orphanet J Rare Dis. 2013;8:195.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shovlin CL, Hughes JM, Tuddenham EG, Temperley I, Perembelon YF, Scott J, et al. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nat Genet. 1994;6(2):205–9.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  43. McDonald MT, Papenberg KA, Ghosh S, Glatfelter AA, Biesecker BB, Helmbold EA, et al. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nat Genet. 1994;6(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  44. Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852–9.

    Article  CAS  PubMed  Google Scholar 

  45. Bayrak-Toydemir P, McDonald J, Akarsu N, Toydemir RM, Calderon F, Tuncali T, et al. A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7. Am J Med Genet A. 2006;140(20):2155–62.

    Article  PubMed  Google Scholar 

  46. Wooderchak-Donahue WL, McDonald J, O’Fallon B, Upton PD, Li W, Roman BL, et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am J Hum Genet. 2013;93(3):530–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Letteboer TG, Mager JJ, Snijder RJ, Koeleman BP, Lindhout D, Ploos van Amstel JK, et al. Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia. J Med Genet. 2006;43(4):371–7.

    Article  CAS  PubMed  Google Scholar 

  48. Lesca G, Olivieri C, Burnichon N, Pagella F, Carette MF, Gilbert-Dussardier B, et al. Genotype-phenotype correlations in hereditary hemorrhagic telangiectasia: data from the French-Italian HHT network. Genet Med. 2007;9(1):14–22.

    Article  PubMed  Google Scholar 

  49. Letteboer TG, Mager HJ, Snijder RJ, Lindhout D, Ploos van Amstel HK, Zanen P, et al. Genotype-phenotype relationship for localization and age distribution of telangiectases in hereditary hemorrhagic telangiectasia. Am J Med Genet A. 2008;146A(21):2733–9.

    Article  PubMed  Google Scholar 

  50. Lesca G, Burnichon N, Raux G, Tosi M, Pinson S, Marion MJ, et al. Distribution of ENG and ACVRL1 (ALK1) mutations in French HHT patients. Hum Mutat. 2006;27(6):598.

    Article  PubMed  Google Scholar 

  51. Kawasaki K, Freimuth J, Meyer DS, Lee MM, Tochimoto-Okamoto A, Benzinou M, et al. Genetic variants of Adam17 differentially regulate TGFbeta signaling to modify vascular pathology in mice and humans. Proc Natl Acad Sci U S A. 2014;111(21):7723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benzinou M, Clermont FF, Letteboer TG, Kim JH, Espejel S, Harradine KA, et al. Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia. Nat Commun. 2012;3:616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Brinjikji W, Iyer VN, Wood CP, Lanzino G. Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: a systematic review and meta-analysis. J Neurosurg. 2016:1–9.

    Google Scholar 

  54. Lasjaunias P. A revised concept of the congenital nature of cerebral arteriovenous malformations. Interv Neuroradiol. 1997;3(4):275–81.

    Article  CAS  PubMed  Google Scholar 

  55. De Cillis E, Burdi N, Bortone AS, D’Agostino D, Fiore T, Ettorre GC, et al. Endovascular treatment of pulmonary and cerebral arteriovenous malformations in patients affected by hereditary haemorrhagic teleangiectasia. Curr Pharm Des. 2006;12(10):1243–8.

    Article  PubMed  Google Scholar 

  56. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284(5419):1534–7.

    Article  CAS  PubMed  Google Scholar 

  57. Urness LD, Sorensen LK, Li DY. Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet. 2000;26(3):328–31.

    Article  CAS  PubMed  Google Scholar 

  58. Mahmoud M, Allinson KR, Zhai Z, Oakenfull R, Ghandi P, Adams RH, et al. Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res. 2010;106(8):1425–33.

    Article  CAS  PubMed  Google Scholar 

  59. Tual-Chalot S, Mahmoud M, Allinson KR, Redgrave RE, Zhai Z, Oh SP, et al. Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. PLoS One. 2014;9(6):e98646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119(11):3487–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Walker EJ, Su H, Shen F, Degos V, Amend G, Jun K, et al. Bevacizumab attenuates VEGF-induced angiogenesis and vascular malformations in the adult mouse brain. Stroke. 2012;43(7):1925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Han C, Choe SW, Kim YH, Acharya AP, Keselowsky BG, Sorg BS, et al. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis. 2014;17(4):823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Corti P, Young S, Chen CY, Patrick MJ, Rochon ER, Pekkan K, et al. Interaction between alk1 and blood flow in the development of arteriovenous malformations. Development. 2011;138(8):1573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, Duarte A, et al. ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell. 2012;22(3):489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mancini ML, Terzic A, Conley BA, Oxburgh LH, Nicola T, Vary CP. Endoglin plays distinct roles in vascular smooth muscle cell recruitment and regulation of arteriovenous identity during angiogenesis. Dev Dyn. 2009;238(10):2479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Somekawa S, Imagawa K, Hayashi H, Sakabe M, Ioka T, Sato GE, et al. Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogenesis. Proc Natl Acad Sci U S A. 2012;109(30):12064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turnbull MM, Humeniuk V, Stein B, Suthers GK. Arteriovenous malformations in Cowden syndrome. J Med Genet. 2005;42(8):e50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Srinivasa RN, Burrows PE. Dural arteriovenous malformation in a child with Bannayan-Riley-Ruvalcaba Syndrome. AJNR Am J Neuroradiol. 2006;27(9):1927–9.

    CAS  PubMed  Google Scholar 

  69. Hamada K, Sasaki T, Koni PA, Natsui M, Kishimoto H, Sasaki J, et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 2005;19(17):2054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Calzavara-Pinton PG, Colombi M, Carlino A, Zane C, Gardella R, Clemente M, et al. Angiokeratoma corporis diffusum and arteriovenous fistulas with dominant transmission in the absence of metabolic disorders. Arch Dermatol. 1995;131(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  71. Wong LB, Perloff JK. Familial occurrence of congenital pulmonary arteriovenous fistulas in octogenarian siblings without telangiectasis. Am J Cardiol. 1988;62(16):1149–50.

    Article  CAS  PubMed  Google Scholar 

  72. Oikawa M, Kuniba H, Kondoh T, Kinoshita A, Nagayasu T, Niikawa N, et al. Familial brain arteriovenous malformation maps to 5p13-q14, 15q11-q13 or 18p11: linkage analysis with clipped fingernail DNA on high-density SNP array. Eur J Med Genet. 2010;53(5):244–9.

    Article  PubMed  Google Scholar 

  73. Stapf C, Labovitz DL, Sciacca RR, Mast H, Mohr JP, Sacco RL. Incidence of adult brain arteriovenous malformation hemorrhage in a prospective population-based stroke survey. Cerebrovasc Dis. 2002;13(1):43–6.

    Article  PubMed  Google Scholar 

  74. Bae IS, Yi HJ, Lee YJ. Multifocal arteriovenous malformations and facial nevus without leptomeningeal angioma: a variant form of Sturge-Weber syndrome? A case report and review of the literatures. Childs Nerv Syst. 2013;29(2):311–5.

    Article  PubMed  Google Scholar 

  75. Nishino K, Ito Y, Sorimachi T, Shimbo J, Fujii Y. Sturge-Weber syndrome associated with arteriovenous malformation in a patient presenting with progressive brain edema and cyst formation. J Neurosurg Pediatr. 2010;5(5):529–34.

    Article  PubMed  Google Scholar 

  76. Kim H, Su H, Weinsheimer S, Pawlikowska L, Young WL. Brain arteriovenous malformation pathogenesis: a response-to-injury paradigm. Acta Neurochir Suppl. 2011;111:83–92.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mikhak B, Weinsheimer S, Pawlikowska L, Poon A, Kwok PY, Lawton MT, et al. Angiopoietin-like 4 (ANGPTL4) gene polymorphisms and risk of brain arteriovenous malformations. Cerebrovasc Dis. 2011;31(4):338–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weinsheimer SM, Xu H, Achrol AS, Stamova B, McCulloch CE, Pawlikowska L, et al. Gene expression profiling of blood in brain arteriovenous malformation patients. Transl Stroke Res. 2011;2(4):575–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fernandez LA, Sanz-Rodriguez F, Blanco FJ, Bernabeu C, Botella LM. Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res. 2006;4(1):66–78.

    Article  Google Scholar 

  80. Ola R, Dubrac A, Han J, Zhang F, Fang JS, Larrivee B, et al. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun. 2016;7:13650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Limaye N, Kangas J, Mendola A, Godfraind C, Schlogel MJ, Helaers R, et al. Somatic activating PIK3CA mutations cause venous malformation. Am J Hum Genet. 2015;97(6):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Castillo SD, Tzouanacou E, Zaw-Thin M, Berenjeno IM, Parker VE, Chivite I, et al. Somatic activating mutations in Pik3ca cause sporadic venous malformations in mice and humans. Sci Transl Med. 2016;8(332):332ra43.

    Article  PubMed  CAS  Google Scholar 

  83. Castel P, Carmona FJ, Grego-Bessa J, Berger MF, Viale A, Anderson KV, et al. Somatic PIK3CA mutations as a driver of sporadic venous malformations. Sci Transl Med. 2016;8(332):332ra42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Vahidnezhad H, Youssefian L, Uitto J. Klippel-Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Exp Dermatol. 2016;25(1):17–9.

    Article  CAS  PubMed  Google Scholar 

  85. Kurek KC, Luks VL, Ayturk UM, Alomari AI, Fishman SJ, Spencer SA, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90(6):1108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim YH, Hu H, Guevara-Gallardo S, Lam MT, Fong SY, Wang RA. Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis. Development. 2008;135(22):3755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development. 2001;128(19):3675–83.

    CAS  PubMed  Google Scholar 

  88. Murphy PA, Lam MT, Wu X, Kim TN, Vartanian SM, Bollen AW, et al. Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice. Proc Natl Acad Sci U S A. 2008;105(31):10901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, et al. Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol. 2005;289(5):C1188–96.

    Article  CAS  PubMed  Google Scholar 

  90. Hrabe de Angelis M, McIntyre J II, Gossler A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature. 1997;386(6626):717–21.

    Article  CAS  PubMed  Google Scholar 

  91. Hutter PA, Kreb DL, Mantel SF, Hitchcock JF, Meijboom EJ, Bennink GB. Twenty-five years’ experience with the arterial switch operation. J Thorac Cardiovasc Surg. 2002;124(4):790–7.

    Article  CAS  PubMed  Google Scholar 

  92. Krebs LT, Shutter JR, Tanigaki K, Honjo T, Stark KL, Gridley T. Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev. 2004;18(20):2469–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Krebs LT, Starling C, Chervonsky AV, Gridley T. Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis. 2010;48(3):146–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Murphy PA, Kim TN, Huang L, Nielsen CM, Lawton MT, Adams RH, et al. Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels. Proc Natl Acad Sci U S A. 2014;111(50):18007–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Murphy PA, Lu G, Shiah S, Bollen AW, Wang RA. Endothelial Notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease. Lab Invest. 2009;89(9):971–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 2000;14(11):1343–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kofler NM, Cuervo H, Uh MK, Murtomaki A, Kitajewski J. Combined deficiency of Notch1 and Notch3 causes pericyte dysfunction, models CADASIL, and results in arteriovenous malformations. Sci Rep. 2015;5:16449.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wythe JD, Dang LT, Devine WP, Boudreau E, Artap ST, He D, et al. ETS factors regulate Vegf-dependent arterial specification. Dev Cell. 2013;26(1):45–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M. The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 2004;18(8):901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nielsen CM, Cuervo H, Ding VW, Kong Y, Huang EJ, Wang RA. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice. Development. 2014;141(19):3782–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pasquale EB. Eph-ephrin bidirectional signaling in physiology and disease. Cell. 2008;133(1):38–52.

    Article  CAS  PubMed  Google Scholar 

  102. Deng Y, Larrivee B, Zhuang ZW, Atri D, Moraes F, Prahst C, et al. Endothelial RAF1/ERK activation regulates arterial morphogenesis. Blood. 2013;121(19):3988–96. S1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, Mulliken JB, et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet. 2017;100(3):546–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hong CC, Peterson QP, Hong JY, Peterson RT. Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr Biol. 2006;16(13):1366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science. 1999;286(5445):1741–4.

    Article  CAS  PubMed  Google Scholar 

  106. Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, et al. The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell. 2010;18(6):938–49.

    Article  CAS  PubMed  Google Scholar 

  107. Corada M, Orsenigo F, Morini MF, Pitulescu ME, Bhat G, Nyqvist D, et al. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun. 2013;4:2609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Duong T, Koltowska K, Pichol-Thievend C, Le Guen L, Fontaine F, Smith KA, et al. VEGFD regulates blood vascular development by modulating SOX18 activity. Blood. 2014;123(7):1102–12.

    Article  CAS  PubMed  Google Scholar 

  109. Chen X, Qin J, Cheng CM, Tsai MJ, Tsai SY. COUP-TFII is a major regulator of cell cycle and Notch signaling pathways. Mol Endocrinol. 2012;26(8):1268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miikka Vikkula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Amyere, M., Boon, L.M., Vikkula, M. (2017). Genetics of Arteriovenous Malformations. In: Beneš, V., Bradáč, O. (eds) Brain Arteriovenous Malformations. Springer, Cham. https://doi.org/10.1007/978-3-319-63964-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63964-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63963-5

  • Online ISBN: 978-3-319-63964-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics