Skip to main content

Wireless Technology for Vehicles

  • Chapter
  • First Online:
Intelligent Transportation Systems

Abstract

Within 20 years of the introduction of electronic computers, the need to have a connection between them emerged. The early foundations of the modern day computer network dates back to the 1960s when large universities and research labs wanted to share information between their computers. Consequently, ethernet was developed in the 1970s to interconnect local computers via cables and wires. Ethernet, standardized as IEEE 802.3, provides a framework for wiring, and protocols for signaling between computers that are not geographically far off. A network comprising of computers connected with wires is known as the Local Area Network (LAN). As of today, LANs not only provide local information sharing, but can also be connected to a router (or hub) to access the external networks. The internet itself is an interconnection of LANs that allows information sharing over a global scale (Bodden 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The terms 802.11 networks, WLANs, and WiFi are used interchangeably.

References

  • Ahmed, I., & Habibi, D. (2008, December 12–14). A novel mobile WiMAX solution for higher throughput. In IEEE Conference on Networks, New Delhi, India, pp. 1–5.

    Google Scholar 

  • Alam, K. M., Saini, M., & Saddik, A. E. (2015). Toward social internet of vehicles: Concept, architecture, and applications. IEEE Access, 3, 343–357.

    Article  Google Scholar 

  • Barrios, C., Motai, Y., & Huston, D. (2015). Trajectory estimations using smartphones. IEEE Transactions on Industrial Electronics, 62, 7901–7910.

    Article  Google Scholar 

  • Bauza, R., Gozalvez, J., & Soriano, J. (2010). Road taffic congestion detection through cooperative vehicle-to-vehicle communications. In IEEE Workshop on User Mobility and Vehicular Networks (pp. 606–612).

    Google Scholar 

  • Bhola, J. (2002). Wireless LANs demystified. New York: McGraw-Hill Professional.

    Google Scholar 

  • Bilchev, G., Marston, D., Hristov, N., Peytchev, E., & Wall, N. (2004). Traffimatics – Intelligent co-operative vehicle highway systems. BT Technology Journal, 22, 73–83.

    Article  Google Scholar 

  • Bodden, V. (2008). Internet. Racine, WI: The Creative Company.

    Google Scholar 

  • Bychkovsky, V., Hull, B., Miu, A., Balakrishnan, H., & Madden, S. (2006, September 24–29). A measurement study of vehicular internet access using in situ WiFi networks. In 12th ACM MobiCom, Los Angeles, CA, USA.

    Google Scholar 

  • Chisalita, I., & Shahmehri, N. (2004, October 10–13). Vehicular communication – A candidate technology for traffic safety. In IEEE International Conference on Systems, Man and Cybernetics, Linkoping, Sweden, pp. 3903–3908.

    Google Scholar 

  • Chou, C.-M., Li, C.-Y., Chien, W.-M., & Lan, K.-C. (2009, May 18–20). A feasibility study on vehicle-to-infrastructure communication: WiFi vs. WiMAX. In 10th International Conference on Mobile Data Management: Systems, Services and Middleware, Taiwan.

    Google Scholar 

  • Dai, P., Liu, K., Zhuge, Q., Sha, E. H.-M., Lee, V. C. S., & Son, S. H. (2017). Quality-of-experience-oriented autonomous intersection control in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 17, 1956–1967.

    Article  Google Scholar 

  • David, K., & Flach, A. (2010). Car-2-x and pedestrian safety. IEEE Vehicular Technology Magazine, 5, 70–76.

    Article  Google Scholar 

  • Drucker, J., & Angwin, J. (2002). Wi-Fi gives cell carriers static. Wall Street Journal.

    Google Scholar 

  • Eriksson, J., Balakrishnan, H., & Madden, S. (2008, September 14–19). Cabernet: Vehicular content delivery using WiFi. In 14th ACM MobiCom, San Francisco, CA, USA, pp. 199–210.

    Google Scholar 

  • Ezell, S. (2010). Explaining international it application leadership: Intelligent transportation systems. Washington, DC: Information Technology and Innovation Foundation.

    Google Scholar 

  • Fall, K., & Farrell, S. (2008). DTN: An architectural retrospective. IEEE Journal on Selected Areas of Communications, 26(5), 828–836.

    Article  Google Scholar 

  • Farrell, S., Cahill, V., Geraghty, D., Humphreys, I., & McDonald, P. (2006). When TCP breaks: Delay- and disruption-tolerant networking. IEEE Internet Computing, 10(4), 72–77.

    Article  Google Scholar 

  • Garroppo, R. G., Gazzarrini, L., Giordano, S., & Tavanti, L. (2011). Experimental assessment of the co-existence of Wi-Fi, ZigBee, and bluetooth devices. In IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks, pp. 1–9.

    Google Scholar 

  • Goel, S., & Yuan, Y. (2015). Emerging research in connected vehicles. IEEE Intelligent Transportation Systems Magazine, 7(2), 6–9.

    Article  Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009a). Disruption model for net-on-roads. In International Conference on Applications of Digital Information and Web Technologies (pp. 282–287).

    Google Scholar 

  • Hasan, S. F., Siddique, N. H., & Chakraborty, S. (2009b). Femtocell versus WiFi – A survey and comparison of architecture and performance. In International Conference on Wireless VITAE (pp. 916–920).

    Google Scholar 

  • Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., et al. (2006, October/November). CarTel: A distributed mobile sensor computing system. In ACM SenSys, Boulder, CO, USA, pp. 125–138.

    Google Scholar 

  • Hult, R., Campos, G. R., Steinmetz, E., Hammarstrand, L., Falcone, P., & Wymeersch, H. (2017). Coordination of cooperative autonomous vehicles. In IEEE Engineering and Technology Magazine.

    Google Scholar 

  • Jones, L. (2017). Driverless cars: When and where. IEEE Engineering and Technology Magazine, 12(2), 36–40.

    Article  MathSciNet  Google Scholar 

  • Joseph, A. D. (2006a). Intelligent transportation systems. IEEE Pervasive Computing, 5(4), 63–67.

    Google Scholar 

  • Kanellos, M., & Charny, B. (2002). PCs to be intel’s wedge into wireless. CNet, available online: http://news.cnet.com/2100-1040-957472.html

  • Kwak, D., Mo, J., & Kang, M. (2009, June 7–9). Investigation of handoffs for IEEE 802.11 networks in vehicular environment. In International Conference on Ubiquitous and Future Networks, Hong Kong, China, pp. 89–94.

    Google Scholar 

  • Kwok, Y., & Lau, V. (2007). Wireless internet and mobile computing: Interoperability and performance. Hoboken: Wiley-IEEE Press.

    Book  Google Scholar 

  • Miller, J. (2008). Vehicle-to-vehicle-to-infrastructure (V2V2I) intelligent transportation system architecture. In IEEE Intelligent Vehicles Symposium, pp. 715–720.

    Google Scholar 

  • Oppenheimer, P. (2004). Top-down network design. Indianapolis: Cisco Press.

    Google Scholar 

  • Radenkovic, M., Crowcroft, J., & Rehmani, M. H. (2016). Towards low cost prototyping of mobile opportunistic disconnection tolerant networks and systems. IEEE Access, 4, 5309–5321.

    Article  Google Scholar 

  • Reinward, C. C. (2007, January 9–11). Municipal broadband – The evolution of next generation wireless networks. In IEEE Radio and Wireless Symposium, Long Beach, CA, pp. 273–276.

    Google Scholar 

  • Renda, A., Guerin, S., & Arbak, E. (2009). EU-Turkey assessment negotiations. Center for European Policy Studies (CEPS).

    Google Scholar 

  • Santa, J., Moragon, A., & G-Skarmeta, A. F. (2008, June 4–6). Experimental evaluation of a novel vehicular communication paradigm based on cellular networks. In IEEE Intelligent Vehicles Symposium, murcia, pp. 193–203.

    Google Scholar 

  • Schmidt, T., & Townsend, A. (2002). Why Wi-Fi wants to be free. Communications of the ACM, 46(5), 47–52.

    Article  Google Scholar 

  • Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey. IEEE Communications Surveys and Tutorials, 10(2), 88–105.

    Article  Google Scholar 

  • Siddique, N. H., Hasan, S. F., & Zabir, S. M. S. (2017). Opportunistic networking: Vehicular, D2D and cognitive radio networks. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Stallings, W. (2008). IEEE 802.11: Moving closer to practical wireless LANs. IT Professional, 3(3), 17–23.

    Article  Google Scholar 

  • Strom, E., Hartenstien, H., Santi, P., & Wiesbeck, W. (2010). Vehicular communications: Ubiquitous networks for sustainable mobility. Proceedings of the IEEE, 98, 1111–1112.

    Google Scholar 

  • Toor, Y., & Muhlethaler, P. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys and Tutorials, 10(3), 74–85.

    Article  Google Scholar 

  • Tufail, A., Fraser, M., Hammad, A., Hyung, K. K., & Yoo, S.-W. (2008, April 16–18). An empirical study to analyze the feasibility of WiFi for VANETs. In 12th International Conference on Computer Supported Cooperative Work in Design, Suwon, pp. 553–558.

    Google Scholar 

  • Uhlemann, E. (2015a). Autonomous vehicles are connecting. IEEE Vehicular Technology Magazine, 10, 22–25.

    Google Scholar 

  • Uhlemann, E. (2015b). Introducing connected vehicles. IEEE Vehicular Technology Magazine, 10, 23–31.

    Google Scholar 

  • Wilke, T. L., Tientrakool, P., & Maxemchuk, N. F. (2009). A survey of inter-vehicle communication protocols and their applications. IEEE Communications Surveys and Tutorials, 11(2), 3–20.

    Article  Google Scholar 

  • Yang, X., Liu, J., Zhao, F., & Vaidya, N. H. (2004). A vehicle-to-vehicle communication protocol for cooperative collision warning. In International Conference on Mobile and Ubiquitous Systems: Networking and Services.

    Google Scholar 

  • Zhang, S., Wu, J., Lu, S. (2016). Distributed workload dissemination for makespan minimization in disruption tolerant networks. IEEE Transactions on Mobile Computing, 15, 1661–1673.

    Article  Google Scholar 

  • Zhou, M., Qu, X., & Jin, S. (2017). On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach. IEEE Transactions on Intelligent Transportation Systems, 18, 1422–1428.

    Google Scholar 

  • Zhu, H., Li, M., Chlamtac, I., & Prabhakaran, B. (2004). A survey of quality of service in IEEE 802.11 networks. IEEE Wireless Communications, 11, 6–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hasan, S.F., Siddique, N., Chakraborty, S. (2018). Wireless Technology for Vehicles. In: Intelligent Transportation Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64057-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64057-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64056-3

  • Online ISBN: 978-3-319-64057-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics