Skip to main content

Symmetry and Complexity

  • Chapter
  • First Online:
Multi-shell Polyhedral Clusters

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 10))

  • 616 Accesses

Abstract

Classical geometric symmetry refers to some operations acting on geometric properties of a polyhedron, that leave the object invariant; it is reflected in several molecular properties, such as dipole moments, IR vibrations, 13C-NMR signals etc. Topological symmetry, defined in terms of connectivity, is addressed to constitutive aspects of a molecule and it is involved in synthesis and/or structure elucidation. Complexity refers to the state or quality of being complex/intricate/complicated, or being the union of some interacting (by some rules) parts. Structural complexity is addressed to the organization of matter. It is studied by the aid of graphs associated to molecules/ions/crystals, on which basis several descriptors are calculated. Topological symmetry speaks about structural complexity by considering the type of atoms/vertices and their reciprocal distribution. Genus and rank (or space dimension) of a structure are parameters of complexity acting by means of Euler characteristic of the embedding surface. The fourth chapter introduces to: Euler characteristic, topological symmetry, indices of centrality, ring signature index and Euler characteristic, as reflected in pairs of map operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasubramanian K (1994) Computer generation of automorphism graphs of weighted graphs. J Chem Inf Comput Sci 34:1146–1150

    Article  CAS  Google Scholar 

  • Balinski ML (1961) On the graph structure of convex polyhedra in n-space. Pac J Math 11:431–434

    Article  Google Scholar 

  • Blatov VA, O’Keeffe M, Proserpio DM (2010) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm 12:44–48

    Article  CAS  Google Scholar 

  • Bonnet O (1853) Note sur la therorie generale des surfaces. C R Acad Sci Paris 37:529–532

    Google Scholar 

  • Buekenhout F, Parker M (1998) The number of nets of the regular convex polytopes in dimension ≤4. Disc Math 186:69–94

    Article  Google Scholar 

  • Dehmer M, Emmert-Streib F, Tsoy RY, Varmuza K (2011) Quantifying structural complexity of graphs: information measures in mathematical chemistry. In: Putz M (ed) Quantum frontiers of atoms and molecules. Nova Publishing House, New York, NY, pp 479–497

    Google Scholar 

  • Dehmer M, Grabner M (2013) The discrimination power of molecular identification numbers revisited. MATCH Commun Math Comput Chem 69(3):785–794

    Google Scholar 

  • Dehmer M, Grabner M, Mowshowitz A, Emmert-Streib F (2013) An efficient heuristic approach to detecting graph isomorphism based on combinations of highly discriminating invariants. Adv Comput Math 39(2):311–325

    Article  Google Scholar 

  • Dehmer M, Mowshowitz A (2011) Generalized graph entropies. Complexity 17(2):45–50

    Article  Google Scholar 

  • Dehmer M, Mowshowitz A, Emmert-Streib F (2013) Advances in network complexity. Wiley-Blackwell, Weinheim

    Book  Google Scholar 

  • Devos M, Mohar B (2007) An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture. Trans Am Math Soc 359(7):3287–3300

    Article  Google Scholar 

  • Diudea MV (1994) Layer matrices in molecular graphs. J Chem Inf Comput Sci 34:1064–1071

    Article  CAS  Google Scholar 

  • Diudea MV (2013) Quasicrystals: between spongy and full space filling. In: Diudea MV, Nagy CL (eds) Diamond and related nanostructures. Springer, Dordrecht, pp 335–385

    Chapter  Google Scholar 

  • Diudea MV, Bende A, Nagy CL (2014) Carbon multi-shell cages. Phys Chem Chem Phys 16:5260–5269

    Article  CAS  Google Scholar 

  • Diudea MV, Bucila VR, Proserpio DM (2013) 1-periodic nanostructures. MATCH Commun Math Comput Chem 70:545–564

    Google Scholar 

  • Diudea MV, Gutman I, Jäntschi L (2002) Molecular topology. NOVA, New York, NY

    Google Scholar 

  • Diudea MV, Ilić A, Varmuza K, Dehmer M (2010) Network analysis using a novel highly discriminating topological index. Complexity 16(6):32–39

    Article  Google Scholar 

  • Diudea MV, Nagy CL (2007) Periodic nanostructures. Springer, Dordrecht

    Book  Google Scholar 

  • Diudea MV, Rosenfeld VR (2017) The truncation of a cage graph. J Math Chem 55:1014–1020

    Article  CAS  Google Scholar 

  • Diudea MV, Ursu O (2003) Layer matrices and distance property descriptors. Indian J Chem A 42(6):1283–1294

    Google Scholar 

  • Epstein D (2016) Euler’s formula references (The geometry Junkyard, Theory Group, ICS, UC Irvine). https://www.ics.uci.edu/~eppstein/junkyard/euler/refs.html

  • Euler L (1752–1753) Elementa doctrinae solidorum-Demonstratio nonnullarum insignium proprietatum, quibus solida hedris planis inclusa sunt praedita. Novi Comment Acad Sci I Petropolitanae 4:109–160

    Google Scholar 

  • Graovac A, Pisanski T (1991) On the Wiener index of a graph. J Math Chem 8:53–62

    Article  Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading, MA

    Book  Google Scholar 

  • Hargittai M, Hargittai I (2010) Symmetry through the eyes of a chemist. Springer, Dordrecht

    Google Scholar 

  • Higuchi Y (2001) Combinatorial curvature for planar graphs. J Graph Theory 38:220–229

    Article  Google Scholar 

  • Klein DJ (2002) Topo-combinatoric categorization of quasi-local graphitic defects. Phys Chem Chem Phys 4:2099–2110

    Article  CAS  Google Scholar 

  • Nagy CL, Diudea MV (2009) Nano-studio. Babes-Bolyai Univ, Cluj

    Google Scholar 

  • Nagy CL, Diudea MV (2017) Ring signature index. MATCH Commun Math Comput Chem 77(2):479–492

    Google Scholar 

  • Pirvan-Moldovan A, Diudea MV (2016) Euler characteristic of polyhedral graphs. Croat Chem Acta 89(4):471–479

    Google Scholar 

  • Razinger M, Balasubramanian K, Munk ME (1993) Graph automorphism perception algorithms in computer-enhanced structure elucidation. J Chem Inf Comput Sci 33:197–201

    Article  CAS  Google Scholar 

  • Schläfli L (1901) Theorie der vielfachen Kontinuität Zürcher und Furrer, Zürich (Reprinted in: Ludwig Schläfli, 1814–1895, Gesammelte Mathematische Abhandlungen, Band 1, 167–387, Verlag Birkhäuser, Basel, 1950)

    Google Scholar 

  • Schulte E (1985) Regular incidence-polytopes with Euclidean or toroidal faces and vertex-figures. J Comb Theory Ser A 40(2):305–330

    Article  Google Scholar 

  • Schulte E (2014) Polyhedra, complexes, nets and symmetry. Acta Crystallogr A 70:203–216

    Article  CAS  Google Scholar 

  • Stefu M, Diudea MV (2005) CageVersatile_CVNET. Babes-Bolyai University, Cluj

    Google Scholar 

  • Ștefu M, Parvan-Moldovan A, Kooperazan-Moftakhar F, Diudea MV (2015) Topological symmetry of C60-related multi-shell clusters. MATCH Commun Math Comput Chem 74:273–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Diudea, M.V. (2018). Symmetry and Complexity. In: Multi-shell Polyhedral Clusters. Carbon Materials: Chemistry and Physics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-64123-2_4

Download citation

Publish with us

Policies and ethics