Skip to main content

Modeling Magnetospheric Fields in the Jupiter System

  • Chapter
Magnetic Fields in the Solar System

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 448))

Abstract

The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter’s main auroral ovals. Jupiter’s moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter’s larger magnetosphere including two auroral ovals. Ganymede’s mini-magnetosphere is qualitatively different compared the one from Jupiter. It possesses no bow shock but develops pronounced Alfvén wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter’s and Ganymede’s magnetospheres presented here provide quantitative insight into these magnetospheres and the processes which maintain them. Jupiter’s magnetospheric field is time-variable on various scales. At the locations of Jupiter’s moons time-periodic magnetic fields induce secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment generated by induction within an electrically conductive layer and due to the plasma interactions with its atmosphere. Callisto’s ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it has primarily been generated by solar photons compared to magnetospheric electrons. At Callisto a fluid-kinetic model of the ionospheric electron distribution provides constraints on Callisto’s oxygen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagenal, F.: The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol. Terr. Phys. 69, 387–402 (2007). doi: 10.1016/j.jastp.2006.08.012

    Article  ADS  Google Scholar 

  • Bagenal, F., Delamere, P.A.: Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. Space Phys. 116, A05209 (2011). doi: 10.1029/2010JA016294

    Article  ADS  Google Scholar 

  • Baumjohann, W., Treumann, R.A.: Basic Space Plasma Physics. Imperial College Press, London (1996)

    Book  Google Scholar 

  • Broadfoot, A.L., et al.: Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science 204, 979–982 (1979)

    Article  ADS  Google Scholar 

  • Carlson, R.: A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. Science 283, 820–821 (1999)

    Article  ADS  Google Scholar 

  • Chané, E., Saur, J., Neubauer, F.M., Raeder, J., Poedts, S.: Observational evidence of Alfvén wings at the Earth. J. Geophys. Res. Space Phys. 117(A16), A09217 (2012). doi: 10.1029/2012JA017628

    Article  ADS  Google Scholar 

  • Chané, E., Saur, J., Poedts, S.: Modeling Jupiter’s magnetosphere: influence of the internal sources. J. Geophys. Res. Space Phys. 118, 2157–2172 (2013). doi: 10.1002/jgra.50258

    Article  ADS  Google Scholar 

  • Chané, E., Raeder, J., Saur, J., Neubauer, F.M., Maynard, K.M., Poedts, S.: Simulations of the Earth’s magnetosphere embedded in sub-Alfvénic solar wind on 24 and 25 May 2002. J. Geophys. Res. Space Phys. 120, 8517–8528 (2015). doi: 10.1002/2015JA021515

    Article  ADS  Google Scholar 

  • Chané, E., Saur, J., Poedts, S., Keppens, R.: How is the Jovian main auroral emission affected by the solar wind? J. Geophys. Res. Space Phys. 122, 1960–1978 (2017). doi: 10.1002/2016JA023318

    Article  ADS  Google Scholar 

  • Christensen, U.R., Holzwarth, V., Reiners, A.: Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009). doi: 10.1038/nature07626

    Article  ADS  Google Scholar 

  • Clarke, J.T., Gérard, J.C., Grodent, D., Wannawichian, S., Gustin, J., Connerney, J., Crary, F., Dougherty, M., Kurth, W., Cowley, S., Bunce, E., Hill, T., Kim, J.: Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719 (2005)

    Article  ADS  Google Scholar 

  • Cowley, S.W.H., Bunce, E.J.: Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001)

    Article  ADS  Google Scholar 

  • Cowley, S.W.H., Bunce, E.J.: Modulation of Jupiter’s main auroral oval emissions by solar wind induced expansions and compressions of the magnetosphere. Plant. Space Sci. 51, 57–79 (2003). doi: 10.1016/S0032-0633(02)00118-6

    Article  ADS  Google Scholar 

  • Cunningham, N.J., Spencer, J.R., Feldman, P.D., Strobel, D.F., France, K., Osterman, S.N.: Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. Icarus 254, 178–189 (2015). doi: 10.1016/j.icarus.2015.03.021

    Article  ADS  Google Scholar 

  • Duling, S., Saur, J., Wicht, J.: Consistent boundary conditions at nonconducting surfaces of planetary bodies: applications in a new Ganymede MHD model. J. Geophys. Res. Space Phys. 119, 4412–4440 (2014). doi: 10.1002/2013JA019554

    Article  ADS  Google Scholar 

  • Feldman, P.D., Most, H.W., Retherford, K., Strobel, D.F., Wolven, B.C., McGrath, M.A., Roesler, F.L., Woodward, R.C., Oliversen, R.J., Ballester, G.E.: Lyman-alpha imaging of the SO2 distribution on Io. Geophys. Res. Lett. 27, 1787–1790 (2000)

    Article  ADS  Google Scholar 

  • Frank, L.A., Paterson, W.R., Khurana, K.K.: Observations of thermal plasmas in Jupiter’s magnetotail. J. Geophys. Res. 107(A1), 101029 (2002)

    Article  Google Scholar 

  • Goertz, C.K.: Io’s interaction with the plasma torus. J. Geophys. Res. 85(A6), 2949–2956 (1980)

    Article  ADS  Google Scholar 

  • Hall, D.T., Feldman, P.D., McGrath, M.A., Strobel, D.F.: The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499(5), 475 (1998)

    Article  ADS  Google Scholar 

  • Hartkorn, O., Saur, J., Strobel, D.F.: Structure and density of Callisto’s atmosphere from a fluid-kinetic model of its ionosphere: comparison with Hubble Space Telescope and Galileo observations. J. Geophys. Res. Planets 282, 237–259 (2017). doi: 10.1016/j.icarus.2016.09.020

    Article  Google Scholar 

  • Hill, T.W.: Inertial limit on corotation. J. Geophys. Res. 84(A11), 6554–6558 (1979)

    Article  ADS  Google Scholar 

  • Hill, T.W.: The Jovian auroral oval. J. Geophys. Res. 106(A5), 8101–8107 (2001)

    Article  ADS  Google Scholar 

  • Hussmann, H., Sohl, F., Spohn, T.: Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006)

    Article  ADS  Google Scholar 

  • Ip, W., Kopp, A.: Resistive MHD simulations of Ganymede’s magnetosphere: 2. Birkeland currents and particle energetics. J. Geophys. Res. 107, CiteID 1491 (2002)

    Google Scholar 

  • Jia, X., Walker, R., Kivelson, M., Khurana, K., Linker, J.: Three-dimensional MHD simulations of Ganymede’s magnetosphere. J. Geophys. Res. 113, A06212 (2008)

    ADS  Google Scholar 

  • Jia, X., Walker, R., Kivelson, M., Khurana, K., Linker, J.: Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. 114, A09209 (2009). doi:10.1029/2009JA014375

    Article  ADS  Google Scholar 

  • Jia, X., Walker, R.J., Kivelson, M.G., Khurana, K.K., Linker, J.A.: Dynamics of Ganymede’s magnetopause: intermittent reconnection under steady external conditions. J. Geophys. Res. Space Phys. 115, A12202 (2010). doi: 10.1029/2010JA015771

    Article  ADS  Google Scholar 

  • Joy, S.P., Kivelson, M.G., Walker, R.J., Khurana, K.K., Russell, C.T., Ogino, T.: Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. Space Phys. 107, 1309 (2002). doi: 10.1029/2001JA009146

    Article  ADS  Google Scholar 

  • Khurana, K.K., Kivelson, M.G., Stevenson, D.J., Schubert, G., Russell, C.T., Walker, R.J., Polanskey, C.: Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998)

    Article  ADS  Google Scholar 

  • Khurana, K.K., et al.: The configuration of Jupiter’s magnetosphere. In: Bagenal, F. (ed.) Jupiter, chap. 24, pp. 593–616. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Khurana, K.K., Jia, X., Kivelson, M.G., Nimmo, F., Schubert, G., Russell, C.T.: Evidence of a global magma ocean in Io’s interior. Science 332, 1186 (2011). doi: 10.1126/science.1201425

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Russell, C.T., Walker, R.J., Warnecke, J., Coroniti, F.V., Polanskey, C., Southwood, D.J., Schubert, G.: Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Joy, S., Russell, C.T., Southwood, D.J., Walker, R.J., Polanskey, C.: Europa’s magnetic signature: report from Galileo’s first pass on 19 December 1996. Science 276, 1239–1241 (1997)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Warnecke, J., Bennett, L., Joy, S., Khurana, K.K., Linker, J.A., Russell, C.T., Walker, R.J., Polanskey, C.: Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. 103, 19963–19972 (1998). doi: 10.1029/98JE00227

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Russell, C.T., Volwerk, M., Walker, J., Zimmer, C.: Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483), 1340–1343 (2000)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Volwerk, M.: The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Bagenal, F., Neubauer, F.M., Kurth, W., Paranicas, C., Saur, J.: Magnetospheric interactions with satellites. In: Bagenal, F., (ed.) Jupiter, chap. 21, pp. 513–536. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Kliore, A.J., Anabtawi, A., Herrea, R., Asmar, S., Nagy, A., Hinson, D.P., Flasar, F.M.: The ionosphere of Callisto from Galileo radio occultation observations. J. Geophys. Res. 107, 1407 (2002). doi:10.1029/2002JA009365

    Article  Google Scholar 

  • Knight, S.: Parallel electric fields. Planet. Space Sci. 21, 741 (1973)

    Article  ADS  Google Scholar 

  • Kopp, A., Ip, W.: Resistive MHD simulations of Ganymede’s magnetosphere: 1. Time variabilities of the magnetic field topology. J. Geophys. Res. 107, SMP 41.1, CiteID 1490 (2002)

    Article  Google Scholar 

  • Krupp, N., et al.: Dynamics of the Jovian Magnetosphere. In: Bagenal, F. (ed.) Jupiter, chap. 25, pp. 617–638. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  • Lanza, A.F.: Hot Jupiters and stellar magnetic activity. Astron. Astrophys. 487, 1163–1170 (2008). doi: 10.1051/0004-6361:200809753, 0805.3010

    Article  ADS  Google Scholar 

  • Liuzzo, L., Feyerabend, M., Simon, S., Motschmann, U.: The impact of Callisto’s atmosphere on its plasma interaction with the Jovian magnetosphere. J. Geophys. Res. Space Phys. 120, 9401–9427 (2015). doi: 10.1002/2015JA021792

    Article  ADS  Google Scholar 

  • Liuzzo, L., Simon, S., Feyerabend, M., Motschmann, U.: Disentangling plasma interaction and induction signatures at Callisto: the Galileo C10 flyby. J. Geophys. Res. Space Phys. 121, 8677–8694 (2016). doi: 10.1002/2016JA023236

    Article  ADS  Google Scholar 

  • Mauk, B., Mitchell, D., Krimigis, S., Roelof, E., Paranicas, C.: Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature 412(6926), 920–922 (2003)

    Article  ADS  Google Scholar 

  • McGrath, M.A., Jia, X., Retherford, K.D., Feldman, P.D., Strobel, D.F., Saur, J.: Aurora on Ganymede. J. Geophys. Res. 118, 2043–2054 (2013). doi:10.1002/jgra.50122

    Article  ADS  Google Scholar 

  • McNutt, R., Belcher, J., Bridge, H.: Positive ion observations in the middle magnetosphere of Jupiter. J. Geophys. Res. 86, 8319–8342 (1981)

    Article  ADS  Google Scholar 

  • Moriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., Shimazu, H.: Current systems in the Jovian magnetosphere. J. Geophys. Res. Space Phys. 113, A05204 (2008). doi: 10.1029/2007JA012751

    Article  ADS  Google Scholar 

  • Neubauer, F.M.: Nonlinear standing Alfvén wave current system at Io: theory. J. Geophys. Res. 85(A3), 1171–1178 (1980)

    Article  ADS  Google Scholar 

  • Neubauer, F.M.: The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res. 103(E9), 19843–19866 (1998)

    Article  ADS  Google Scholar 

  • Ogino, T., Walker, R.J., Kivelson, M.G.: A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 103, 225 (1998). doi: 10.1029/97JA02247

    Article  ADS  Google Scholar 

  • Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). doi: 10.1086/146579

    Article  ADS  Google Scholar 

  • Paty, C., Winglee, R.: Multi-fluid simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 31, L24806 (2004)

    Article  ADS  Google Scholar 

  • Paty, C., Winglee, R.: The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett. 33, L10106 (2006)

    Article  ADS  Google Scholar 

  • Paty, C., Paterson, W., Winglee, R.: Ion energization in Ganymede’s magnetosphere: using multifluid simulations to interpret ion energy spectrograms. J. Geophys. Res. 113, A06211 (2008). doi:10.1029/2007JA012848

    Article  ADS  Google Scholar 

  • Preusse, S., Kopp, A., Büchner, J., Motschmann, U.: A magnetic communication scenario for hot Jupiters. Astron. Astrophys. 460, 317–322 (2006). doi: 10.1051/0004-6361:20065353

    Article  ADS  Google Scholar 

  • Radioti, A., GéRard, J.C., Grodent, D., Bonfond, B., Krupp, N., Woch, J.: Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. Space Phys. 113, A01215 (2008). doi: 10.1029/2007JA012610

    Article  ADS  Google Scholar 

  • Rambaux, N., van Hoolst, T., Karatekin, Ö.: Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit. Astron. Astrophys. 527, A118 (2011). doi: 10.1051/0004-6361/201015304

    Article  Google Scholar 

  • Ray, L.C., Ergun, R.E., Delamere, P.A., Bagenal, F.: Magnetosphere-ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. Space Phys. 115, A09211 (2010). doi: 10.1029/2010JA015423

    Article  ADS  Google Scholar 

  • Saur, J., Strobel, D.F., Neubauer, F.M.: Interaction of the Jovian magnetosphere with Europa: constraints on the neutral atmosphere. J. Geophys. Res. 103(E9), 19947–19962 (1998)

    Article  ADS  Google Scholar 

  • Saur, J., Politano, H., Pouquet, A., Matthaeus, W.: Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter. Astron. Astrophys. 386(2), 699 (2002)

    Article  ADS  Google Scholar 

  • Saur, J., Strobel, D., Neubauer, F., Summers, M.: The ion mass loading rate at Io. Icarus 163, 456–468 (2003)

    Article  ADS  Google Scholar 

  • Saur, J., Grambusch, T., Duling, S., Neubauer, F.M., Simon, S.: Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron. Astrophys. 552, A119 (2013). doi: 10.1051/0004-6361/201118179

    Article  ADS  Google Scholar 

  • Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D.F., Feldman, P.D., Christensen, U.R., Retherford, K.D., McGrath, M.A., Musacchio, F., Wennmacher, A., Neubauer, F.M., Simon, S., Hartkorn, O.: The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120, 1715–1737 (2015). doi: 10.1002/2014JA020778

    Article  ADS  Google Scholar 

  • Seufert, M.: Callisto: induction signals, atmosphere and plasma interaction. Dissertation, Institut für Geophysik und Meteorologie der Universität zu Köln (2012)

    Google Scholar 

  • Seufert, M., Saur, J., Neubauer, F.M.: Multi-frequency electromagnetic sounding of the Galilean moons. Icarus 214, 477–494 (2011). doi: 10.1016/j.icarus.2011.03.017

    Article  ADS  Google Scholar 

  • Showman, A.P., Malhotra, R.: The Galilean satellites. Science 296, 77–84 (1999)

    Article  ADS  Google Scholar 

  • Sohl, F., Spohn, T., Breuer, D., Nagel, K.: Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157, 104–119 (2002)

    Article  ADS  Google Scholar 

  • Southwood, D.J., Kivelson, M.G.: A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. 106, 6123–6130 (2001). doi: 10.1029/2000JA000236

    Article  ADS  Google Scholar 

  • Southwood, D.J., Kivelson, M.G., Walker, R.J., Slavin, J.A.: Io and its plasma environment. J. Geophys. Res. 85(A11), 5959–5968 (1980)

    Article  ADS  Google Scholar 

  • Strobel, D.F., Saur, J., Feldman, P.D., McGrath, M.A.: Hubble Space Telecope Space Telescope Imaging Spectrograph search for an atmosphere on Callisto: a Jovian unipolar inductor. Astrophys. J. Lett. 581, L51–L54 (2002)

    Article  ADS  Google Scholar 

  • Vance, S., Bouffard, M., Choukroun, M., Sotin, C.: Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96, 62–70 (2014). doi: 10.1016/j.pss.2014.03.011

    Article  ADS  Google Scholar 

  • Vasyliūnas, V.M.: Plasma distribution and flow. In: Dessler, A.J. (ed.) Physics of the Jovian Magnetosphere, chap. 11, pp. 395–453. Cambridge University Press, Cambridge (1983)

    Chapter  Google Scholar 

  • Vogt, M.F., Jackman, C.M., Slavin, J.A., Bunce, E.J., Cowley, S.W.H., Kivelson, M.G., Khurana, K.K.: Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. Space Phys. 119, 821–843 (2014). doi: 10.1002/2013JA019393

    Article  ADS  Google Scholar 

  • Walker, R.J., Ogino, T.: A simulation study of currents in the Jovian magnetosphere. Planet. Space Sci. 51, 295–307 (2003). doi: 10.1016/S0032-0633(03)00018-7

    Article  ADS  Google Scholar 

  • Zimmer, C., Khurana, K., Kivelson, M.: Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Saur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Saur, J., Chané, E., Hartkorn, O. (2018). Modeling Magnetospheric Fields in the Jupiter System. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_6

Download citation

Publish with us

Policies and ethics