Skip to main content

Development and Characterization of Microcrystalline Cellulose Based Novel Multi-scale Biocomposites

  • Conference paper
  • First Online:
Advances in Natural Fibre Composites

Abstract

Recently, multi-scale composites have been developed by combining reinforcements from different length scales, in order to overcome the drawbacks of conventional composites as well to enhance their performances. Most of the research works on multi-scale composites have been performed using carbon based nanomaterials such as carbon nanotubes (CNTs) and nano fibres (CNFs). Looking at the outstanding characteristics of carbon based multi-scale composites, multi-scale composites based on plant based fibres and nano materials are also gaining research attention. This paper provides a brief overview of recent research studies on multi-scale composites, particularly focusing on plant based fibres and nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rana, S., Subramani, P., Fangueiro, R., & Correia, A. G. (2016). A review on smart self-sensing composite materials for civil engineering applications. AIMS Materials Science, 3(2), 357–379.

    Article  Google Scholar 

  2. Rana, S., Zdraveva, E., Pereira, C., Fangueiro, R., & Correia, A. G. (2014). Development of hybrid braided composite rods for reinforcement and health monitoring of structures. The Scientific World Journal, 2014(2014), 1–9.

    Google Scholar 

  3. Rosado, K. P., Rana, S., Pereira, C., & Fangueiro, R. (2013). Self-sensing hybrid composite rod with braided reinforcement for structural health monitoring. Materials Science Forum, 730–732, 379–384.

    Google Scholar 

  4. Rana, S., Alagirusamy, R., & Joshi, M. (2009). A review on carbon epoxy nanocomposites. Journal of Reinforced Plastics Composites, 28, 461–487.

    Article  Google Scholar 

  5. Rana, S., Alagirusamy, R., & Joshi, M. (2011). Single-walled carbon nanotube incorporated novel three phase carbon/epoxy composite with enhanced properties. Journal of Nanoscience and Nanotechnology, 11(8), 7033–7036.

    Article  Google Scholar 

  6. Rana, S., Alagirusamy, R., & Joshi, M. (2011). Development of carbon nanofibre incorporated three phase carbon/epoxy composites with enhanced mechanical, electrical and thermal properties. Composites Part A Applied Science and Manufacturing, 42(5), 439–445.

    Article  Google Scholar 

  7. Rana, S., Bhattacharyya, A., Parveen, S., Fangueiro, R., Alagirusamy, R., & Joshi, M. (2013). Processing and performance of carbon/epoxy multi-scale composites containing carbon nanofibres and single walled carbon nanotubes. Journal of Polymer Research, 20(12), 1–11.

    Article  Google Scholar 

  8. Rana, S., Parveen, S., & Fangueiro, R. (2015). Advanced carbon nanotube reinforced multi-scale composites. In Ehsan Bakerpur (Ed.), Advanced composite materials: Manufacturing, properties, and applications, De Gruyter Open.

    Google Scholar 

  9. Rana, S., Alagirusamy, R., Fangueiro, R., & Joshi, M. (2012). Effect of carbon nanofiber functionalization on the in-plane mechanical properties of carbon/epoxy multiscale composites. Journal of Applied Polymer Science, 125(3), 1951–1958.

    Article  Google Scholar 

  10. Rana, S., & Fangueiro, R. (Eds.) (2016) Advanced composite materials for aerospace engineering: Processing, properties and applications. Woodhead Publishing.

    Google Scholar 

  11. Rana, S., Pichandi, S., Parveen, S. & Fangueiro, R. (2014). Natural plant fibers: Production, processing, properties and their sustainability parameters. In Roadmap to Sustainable Textiles and Clothing (pp. 1–35). Singapore: Springer.

    Google Scholar 

  12. Relvas, C., Castro, G., Rana, S., & Fangueiro, R. (2015). Characterization of physical, mechanical and chemical properties of quiscal fibres: The influence of atmospheric DBD plasma treatment. Plasma Chemistry and Plasma Processing, 35(5), 863–878.

    Article  Google Scholar 

  13. Zhuang, R.-C., Doan, T. T. L., Liu, J.-W., Zhang, J., Gao, S.-L., & Mäder, E. (2011). Multi-functional multi-walled carbon nanotube-jute fibres and composites. Carbon, 49(8), 2683–2692.

    Article  Google Scholar 

  14. Parveen S, Rana S, Fangueiro R. (2017). Macro and nano dimensional plant fibre reinforcements for cementitious composites. In Sustainable & non-conventional construction materials using inorganic bonded fiber composites. Woodhead Publishing.

    Google Scholar 

  15. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941–3994.

    Article  Google Scholar 

  16. Peng, B. L., Dhar, N., Liu, H. L., & Tam, K. C. (2011). Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. The Canadian Journal of Chemical Engineering, 89(5), 1191–1206.

    Article  Google Scholar 

  17. Pommet, M., Juntaro, J., Heng, J. Y. Y., Mantalaris,A., Lee, A. F., Wilson, K., et al. (2008). Surface modification of natural fibers using bacteria: Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9, No. 6: 1643–1651.

    Google Scholar 

  18. Juntaro, J., Pommet, M., Kalinka, G., Mantalaris, A., Shaffer, M. S. P., & Bismarck, A. (2008). Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Advanced materials 20, No. 16: 3122–3126.

    Google Scholar 

  19. Jabbar, A., Militký, J., Wiener, J., Kale, B. M., Ali, U., & Rwawiire, S. (2017). Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Composite Structures 161: 340–349.

    Google Scholar 

  20. Karlsson, J. O., Gatenholm, P., Blachot, J.‐F., & Peguy, A. (1996). Improvement of adhesion between polyethylene and regenerated cellulose fibers by surface fibrillation. Polymer composites 17, No. 2: 300–304.

    Google Scholar 

  21. Mohammadkazemi, F., Doosthoseini, K., Ganjian, E., & Azin, M. (2015). Manufacturing of bacterial nano-cellulose reinforced fiber—cement composites. Construction and Building Materials, 101, 958–964.

    Article  Google Scholar 

  22. Peters, S., Rushing, T., Landis, E., & Cummins, T. (2010). Nanocellulose and microcellulose fibers for concrete. Transportation Research Record: Journal of the Transportation Research Board, 2142, 25–28.

    Article  Google Scholar 

  23. Okubo, K., Fujii, T., & Thostenson, E. T. (2009). Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Composites Part A Applied Science and Manufacturing, 40(4), 469–475.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohel Rana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Rana, S., Parveen, S., Pichandi, S., Fangueiro, R. (2018). Development and Characterization of Microcrystalline Cellulose Based Novel Multi-scale Biocomposites. In: Fangueiro, R., Rana, S. (eds) Advances in Natural Fibre Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-64641-1_15

Download citation

Publish with us

Policies and ethics