Skip to main content

Boron Isotopic Systematics in Scleractinian Corals and the Role of pH Up-regulation

  • Chapter
  • First Online:
Boron Isotopes

Abstract

The boron isotopic composition (δ11B) of scleractinian corals has been used to track changes in seawater pH and more recently as a probe into the processes controlling bio-calcification. For corals that precipitate aragonite skeletons, up-regulation of pH appears to be a general characteristic, typically being ~0.3 to ~0.6 pH units higher than ambient seawater. The relationship between the pH of the corals calcifying-fluid (pHcf) and seawater pHT (total scale) is shown to be dependent on both physiological as well environmental factors. In laboratory experiments conducted on symbiont-bearing (zooxanthellate) corals under conditions of constant temperature and seawater pH, changes in the δ11B derived calcifying fluid pHcf is typically 1/3 to 1/2 of that of ambient seawater. Similar linear relationships are found for cold water corals that live in relatively stable, cold, deep-water environments but at significantly elevated levels of pHcf (~0.5–1 pH units above seawater), a likely response to the lower pH of their deep-sea environments. In contrast, zooxanthellae-bearing corals living in shallow-water reef environments that experience significant natural variations in temperature, light, nutrients and seawater pH, show different types of responses. For example, over seasonal time-scales Porites corals from the Great Barrier Reef (GBR) have a large range in pHcf of ~8.3 to ~8.5, significantly greater (~×2 to ~×3) than that of reef-water (pHT ~8.01 to ~8.08), and an order of magnitude greater than that expected from ‘static’ laboratory experiments. Strong physiological controls, but of a different character, are found in corals grown in a Free Ocean Carbon Enrichment Experiment (FOCE) conducted in situ within the Heron Island lagoon (GBR). These corals exhibit near constant pHcf values regardless of external changes in temperature and seawater pH. This pattern of strong physiologically controlled ‘pH-homeostasis’, with elevated but constant pHcf has been found despite large natural seasonal variations in the pH (±0.15 pH units) of the lagoon waters, as well as the even larger super-imposed decreases in seawater pH (~0.25 pH units) designed to simulate year 2100 conditions. In natural reef environments we thus find that the processes influencing the up-regulation of pHcf in symbiont-bearing corals are subject to strong physiological controls, behaviour that is not well simulated in the current generation of aquaria-based experiments with fixed seawater pH and temperature. Conversely, cold-water corals that lack symbionts and inhabit the relatively stable deep-sea environments hold the best prospects for providing reliable reconstructions of seawater pH. Clearly, further studies utilising the δ11B-pHcf proxy combined with other DIC/carbonate-ion proxies (e.g. B/Ca), but conducted under realistic ‘natural’ conditions, are required to elucidate the processes controlling coral bio-calcification and to better understand the vulnerability of scleractinian corals to anthropogenic driven warming and ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288(1):1–15

    Article  Google Scholar 

  • Albright R, Langdon C, Anthony K (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10(10):6747–6758

    Article  Google Scholar 

  • Allemand D, Ferrier-Pagès C, Furla P, Houbrèque F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3(6–7):453–467

    Article  Google Scholar 

  • Allemand D, Tambutté E, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 119–150

    Chapter  Google Scholar 

  • Allison N, Finch AA, Eimf (2010) Delta B-11, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry. Geochim Cosmochim Acta 74(6):1790–1800

    Article  Google Scholar 

  • Allison N, Cohen I, Finch AA, Erez J, Tudhope AW (2014) Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat Commun 5:5741

    Google Scholar 

  • Anagnostou E, Huang KF, You CF, Sikes EL, Sherrell RM (2012) Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet Sci Lett 349:251–260

    Article  Google Scholar 

  • Barnes D (1983) Profiling coral reef productivity and calcification using pH and oxygen electrodes. J Exp Mar Biol Ecol 66(2):149–161

    Article  Google Scholar 

  • Blamart D, Rollion-Bard C, Meibom A, Cuif J-P, Juillet-Leclerc A, Dauphin Y (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleopH. Geochem Geophys Geosyst 8(Q12001):11

    Google Scholar 

  • Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14(2):179–199

    Google Scholar 

  • Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15(2):111–114

    Article  Google Scholar 

  • Caldeira K, Archer D, Barry JP, Bellerby RGJ, Brewer PG, Cao L, Dickson AG, Doney SC, Elderfield H, Fabry VJ, Feely RA, Gattuso JP, Haugan PM, Hoegh-Guldberg O, Jain AK, Kleypas JA, Langdon C, Orr JC, Ridgwell A, Sabine CL, Seibel BA, Shirayama Y, Turley C, Watson AJ, Zeebe RE (2007) Comment on “modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loaiciga. Geophys Res Lett 34(18)

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M (eds) (2014) Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22(4):118–127

    Article  Google Scholar 

  • Cohen AL, McConnaughey T (2003) Geochemical perspectives on coral mineralization. In: Dove P, Weiner S, Yoreo J (eds) Biomineral Rev Mineral Geochem pp. 151–187

    Google Scholar 

  • Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Biol Ecol 115(1):67–77

    Article  Google Scholar 

  • Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res Part A 37:755–766

    Article  Google Scholar 

  • Douville E, Paterne M, Cabioch G, Louvat P, Gaillardet J, Juillet-Leclerc A, Ayliffe L (2010) Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites). Biogeosciences 7(8):2445–2459

    Article  Google Scholar 

  • D’Olivo JP, McCulloch MT, Eggins SM, Trotter J (2015) Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs. Biogeosciences 12(4):1223

    Google Scholar 

  • Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Dove PM, Yoreao JJD, Weiner S (eds) Rev Mineral Geochem 54:115–149

    Google Scholar 

  • Falter JL, Lowe RJ, Zhang ZL, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS ONE 8(1)

    Google Scholar 

  • Fautin DG, Guinotte JM, Orr JC (2009) Comparative depth distribution of corallimorpharians and scleractinians (Cnidaria: Anthozoa). Mar Ecol Prog Ser 397:63–70

    Article  Google Scholar 

  • Försterra G, Beuck L, Häussermann V, Freiwald A (eds) (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 937–977

    Google Scholar 

  • Foster GL, Rae J, Elliott T (2008) Boron isotope measurements of marine carbonate using MC-ICPMS. Geochim Cosmochim Acta 72(12):A279

    Google Scholar 

  • Foster GL, Pogge von Strandmann, PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11(8)

    Google Scholar 

  • Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    Article  Google Scholar 

  • Gattuso JP, Kirkwood W, Barry JP, Cox E, Gazeau F, Hansson L, Hendriks I, Kline DI, Mahacek P, Martin S, McElhany P, Peltzer ET, Reeve J, Roberts D, Saderne V, Tait K, Widdicombe S, Brewer PG (2014) Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences 11(15):4057–4075

    Article  Google Scholar 

  • Georgiou L, Falter J, Trotter J, Kline DI, Holcomb M, Dove SG, Hoegh-Guldberg O, McCulloch M (2015) pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. Proc Natl Acad Sci 112(43):13219–13224

    Article  Google Scholar 

  • Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56(1):537–543

    Article  Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73(14):4166–4179

    Article  Google Scholar 

  • Holcomb M, Venn AA, Tambutte E, Tambutte S, Allemand D, Trotter J, McCulloch M (2014) Coral calcifying fluid pH dictates response to ocean acidification. Sci Rep 4:5207–5211

    Article  Google Scholar 

  • Honisch B, Hemming NG (2004) Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects. Paleoceanography 19(4)

    Google Scholar 

  • Honisch B, Hemming NG (2005) Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet Sci Lett 236:305–314

    Article  Google Scholar 

  • Honisch B, Hemming NG, Grottoli AG, Amat A, Hanson GN, Bijma J (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim Cosmochim Acta 68:3675–3685

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933

    Article  Google Scholar 

  • Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Chem Soc Jpn B50:158–163

    Article  Google Scholar 

  • Kline DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M (2012) A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci Rep 2

    Google Scholar 

  • Kline DI, Teneva L, Hauri C, Schneider K, Miard T, Chai A, Marker M, Dunbar R, Caldeira K, Lazar B, Rivlin T, Mitchell BG, Dove S, Hoegh-Guldberg O (2015) Six month in situ high-resolution carbonate chemistry and temperature study on a coral reef flat reveals asynchronous pH and temperature anomalies. PLoS ONE 10(6):e0127648

    Article  Google Scholar 

  • Klochko K, Kaufman AJ, Yoa W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:261–270

    Article  Google Scholar 

  • Klochko K, Cody GD, Tossell JA, Dera P, Kaufman AJ (2009) Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR. Geochim Cosmochim Acta 73(7):1890–1900

    Article  Google Scholar 

  • Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177(4045):270–272

    Google Scholar 

  • Krief S, Hendy EJ, Fine M, Yam R, Meibom A, Foster GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74(17):4988–5001

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. In: C.D.I.A. Center (ed). Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, p 21

    Google Scholar 

  • Liu Y, Liu W, Peng Z, Xiao Y, Wei G, Sun W, He J, Liu G, Chou C-L (2009) Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals. Geochim Cosmochim Acta 73(5):1264–1272

    Article  Google Scholar 

  • Mavromatis V, Montouillout V, Noireaux J, Gaillardet J, Schott J (2015) Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochim Cosmochim Acta 150:299–313

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2(8):623–627

    Article  Google Scholar 

  • McCulloch MT, Trotter JA, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M, Thresher R (2012b) Boron isotope systematics of cold-water scleractinian corals: internal pH up-regulation and response to ocean acidification. Geochim Cosmochim Acta 87:21–34

    Article  Google Scholar 

  • McCulloch MT, D’Olivo JP, Falter J, Holcomb M, Trotter JA (2017) Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation. Nat Commun 8

    Google Scholar 

  • Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran CT, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata characterization, localization, and role in biomineralization. J Biol Chem 283(37):25475–25484

    Article  Google Scholar 

  • Noireaux J, Mavromatis V, Gaillardet J, Schott J, Montouillout V, Louvat P, Rollion-Bard C, Neuville D (2015) Crystallographic control on the boron isotope paleo-pH proxy. Earth Planet Sci Lett 430:398–407

    Article  Google Scholar 

  • Pelejero C, Calvo E, McCulloch MT, Marshall JF, Gagan MK, Lough JM, Opdyke BN (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309(5744):2204–2207

    Article  Google Scholar 

  • Rae JWB, Foster GL, Schmidt DN, Elliott T (2011) Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet Sci Lett 302(3–4):403–413

    Article  Google Scholar 

  • Reynaud S, Hemming NG, Juillet-Leclerc A, Gattuso J-P (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23:539–546

    Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547

    Article  Google Scholar 

  • Rollion-Bard C, Chaussidon M, France-Lanord C (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215(1–2):275–288

    Article  Google Scholar 

  • Rollion-Bard C, Blamart D, Trebosc J, Tricot G, Mussi A, Cuif J-P (2011) Boron isotopes as pH proxy: a new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS. Geochimica et Cosmochimicha Acta 75:1003–1012

    Article  Google Scholar 

  • Tanaka K, Holcomb M, Takahashi A, Kurihara H, Asami R, Shinjo R, Sowa K, Rankenburg K, Watanabe T, McCulloch M (2015) Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34(4):1139–1149

    Article  Google Scholar 

  • Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–99

    Article  Google Scholar 

  • Trotter JA, Montagna P, McCulloch MT, Silenzi S, Reynaud S, Mortimer G, Martin S, Ferrier-Pageè C, Gattuso J-P, Rodolfo-Metalpa R (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31

    Article  Google Scholar 

  • Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55(10):2901–2910

    Article  Google Scholar 

  • Venn AA, Tambutte E, Lotto S, Zoccola D, Allemand D, Tamubtte S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. In: Falkowski PG (ed) PNAS, pp 16574–16579

    Google Scholar 

  • Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S (2013) Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals. Proc Natl Acad Sci U S A 110(5):1634–1639

    Article  Google Scholar 

  • Wall M, Fietzke J, Schmidt GM, Fink A, Hofmann LC, de Beer D, Fabricius KE (2016) Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions. Sci Rep 6:30688

    Article  Google Scholar 

  • Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73:2332–2346

    Article  Google Scholar 

  • Zeebe R, Wolf-Gladow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes Elsevier Oceanography Series, vol 65. Elsevier, Amsterdam, p 65

    Google Scholar 

  • Zoccola D, Ganot P, Bertucci A, Caminiti-Segonds N, Techer N, Voolstra CR, Aranda M, Tambutté E, Allemand D, Casey JR, Tambutté S (2015) Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep 5:9983

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from an ARC Laureate Fellowship awarded to Professor Malcolm McCulloch and the ARC Centre of Excellence for Coral Reef Studies. Dr Julie Trotter was supported by an ARC Future Fellowship and Dr Michael Holcomb by an ARC Super Science Fellowship. Dr Paolo Montagna is grateful for ongoing support by the Institute of Marine Sciences, CNR, Italy and this is ISMAR-CNR Bologna scientific contribution n. 1915. We thank Anne-Marin Comeau and Dr Kai Rankenburg for their technical assistance with measurements of the δ11B isotopic and B/Ca elemental ratios being conducted at The University of Western Australia’s Advanced Geochemical Facility for Indian Ocean Research (AGFIOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm T. McCulloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCulloch, M.T. et al. (2018). Boron Isotopic Systematics in Scleractinian Corals and the Role of pH Up-regulation. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_6

Download citation

Publish with us

Policies and ethics