Skip to main content

Rivers as Ecosystems

  • Chapter
  • First Online:
Sustaining River Ecosystems and Water Resources

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 989 Accesses

Abstract

This chapter reviews the different physical components of the river corridor, the physical processes that create and maintain those components, and the interactions between physical processes and living organisms. Among the critical aspects of physical processes and physical-biotic interactions are transfers of matter and energy and the occasional disturbances that reconfigure the river ecosystem and the processes occurring within the ecosystem. Individual rivers and segments of rivers respond differently to these disturbances and the nature of the response is characterized by how much the river ecosystem changes and how quickly the ecosystem recovers from change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe TB, Montgomery DR (2003) Patterns and processes of wood debris accumulation in the Queets River basin, Washington. Geomorphology 51:81–107

    Article  Google Scholar 

  • Arnaud F, Piegay H, Schmitt L, Rollet AJ, Ferrier V, Beal D (2015) Historical geomorphic analysis (1932–2011) of a by-passed river reach in process-based restoration perspectives: the Old Rhine downstream of the Kembs diversion dam (France, Germany). Geomorphology 236:163–177

    Article  Google Scholar 

  • Baartman JEM, Masselink R, Keesstra SD, Temme AJAM (2013) Linking landscape morphological complexity and sediment connectivity. Earth Surf Process Landf 38:1457–1471

    Google Scholar 

  • Bailey RG (1995) Description of the ecoregions of the United States, 2nd edn. USDA Forest Service Miscellaneous Publication 1391, Washington, DC

    Google Scholar 

  • Baker DW, Bledsoe BP, Price JM (2012) Stream nitrate uptake and transient storage over a gradient of geomorphic complexity, north-central Colorado, USA. Hydrol Process 26:3241–3252

    Article  CAS  Google Scholar 

  • Baker VR (1988) Flood erosion. In: Baker VR, Kochel RC, Patton PC (eds) Flood geomorphology. Wiley, New York, pp 81–95

    Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  CAS  Google Scholar 

  • Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packman AI (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263

    Article  CAS  Google Scholar 

  • Baxter CV, Fausch KD, Saunders WC (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220

    Article  Google Scholar 

  • Bayley PB (1991) The flood pulse advantage and the restoration of river-floodplain systems. River Res Appl 6:75–86

    Article  Google Scholar 

  • Beckman ND, Wohl E (2014) Carbon storage in mountainous headwater streams: the role of old-growth forest and logjams. Water Resour Res 50:2376–2393

    Article  CAS  Google Scholar 

  • Bellmore JR, Baxter CV (2014) Effects of geomorphic process domains on river ecosystems: a comparison of floodplain and confined valley segments. River Res Appl 30:617–630

    Article  Google Scholar 

  • Benda L (1990) The influence of debris flows on channels and valley floors in the Oregon Coast Range, USA. Earth Surf Process Landf 15:457–466

    Article  Google Scholar 

  • Benda LE, Sias JC (2003) A quantitative framework for evaluating the mass balance of in-stream organic debris. For Ecol Manag 172:1–16

    Article  Google Scholar 

  • Beschta RL, Ripple WJ (2012) The role of large predators in maintaining riparian plant communities and river morphology. Geomorphology 157–158:88–98

    Article  Google Scholar 

  • Boivin M, Buffin-Bélanger T, Piégay H (2015) The raft of the Saint-Jean River, Gaspé (Québec, Canada): a dynamic feature trapping most of the wood transported from the catchment. Geomorphology 231:270–280

    Article  Google Scholar 

  • Bongaarts J (2009) Human population growth and the demographic transition. Philos Trans R Soc B 364:2985–2990

    Article  Google Scholar 

  • Braccia A, Batzer DP (2001) Invertebrates associated with woody debris in a southeastern US forested floodplain wetland. Wetlands 21:18–31

    Article  Google Scholar 

  • Brierley GJ, Brooks AP, Fryirs K, Taylor MP (2005) Did humid-temperate rivers in the Old and New Worlds respond differently to clearance of riparian vegetation and removal of woody debris? Prog Phys Geogr 29:27–49

    Article  Google Scholar 

  • Brierley GJ, Fryirs KA (2005) Geomorphology and river management: applications of the river styles framework. Blackwell, Oxford, p 398

    Google Scholar 

  • Brierley G, Fryirs K (2009) Don’t fight the site: three geomorphic considerations in catchment-scale river rehabilitation planning. Environ Manag 43:1201–1218

    Article  Google Scholar 

  • Brummer CJ, Abbe TB, Sampson JR et al (2006) Influence of vertical channel change associated with wood accumulations on delineating channel migration zones, Washington, USA. Geomorphology 80:295–309

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Brunsden D, Thornes JB (1979) Landscape sensitivity and change. Trans Inst Br Geogr 4:463–484

    Article  Google Scholar 

  • Buffington JM, Montgomery DR (1999) Effects of hydraulic roughness on surface textures of gravel-bed rivers. Water Resour Res 35:3507–3521

    Article  Google Scholar 

  • Buffington JM, Tonina D (2009) Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr Compass 3:1038–1062

    Article  Google Scholar 

  • Bull WB (1991) Geomorphic responses to climatic change. Oxford University Press, New York

    Google Scholar 

  • Burchsted D, Daniels M, Thorson R, Vokoun J (2010) The river discontinuum: applying beaver modifications to baseline conditions for restoration of forested headwaters. Bioscience 60:908–922

    Article  Google Scholar 

  • Cadenasso ML, Pickett STA, Grove JM (2006) Dimensions of ecosystem complexity: heterogeneity, connectivity, and history. Ecol Complex 3:1–12

    Article  Google Scholar 

  • Cenderelli DA, Wohl EE (2003) Flow hydraulics and geomorphic effects of glacial-lake outburst floods in the Mount Everest region, Nepal. Earth Surf Process Landf 28:385–407

    Article  Google Scholar 

  • Choné G, Biron PM (2016) Assessing the relationship between river mobility and habitat. River Res Appl 32:528–539

    Article  Google Scholar 

  • Collins BD, Montgomery DR, Fetherston KL, Abbe TB (2012) The floodplain large-wood cycle hypothesis: a mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology 139–140:460–470

    Article  Google Scholar 

  • Constantine JA, Dunne T, Ahmed J, Legleiter C, Lazarus ED (2014) Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat Geosci 7:899–903

    Article  CAS  Google Scholar 

  • Cote D, Kehler DG, Bourne C, Wiersma YF (2009) A new measure of longitudinal connectivity for stream networks. Landsc Ecol 24:101–113

    Article  Google Scholar 

  • Cuffney TF (1988) Input, movement, and exchange of organic matter within a subtropical coastal black water river-floodplain system. Freshw Biol 19:305–320

    Article  Google Scholar 

  • Curran JH, Wohl EE (2003) Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology 51:141–157

    Article  Google Scholar 

  • Dunkerley D (2014) Nature and hydro-geomorphic roles of trees and woody debris in a dryland ephemeral stream: Fowlers Creek, arid western New South Wales, Australia. J Arid Environ 102:40–49

    Article  Google Scholar 

  • Dunne T, Aalto RE (2013) Large river floodplains. In: Wohl E, Shroder JF (eds) Fluvial geomorphology. Treatise on geomorphology, vol 9. Elsevier, pp 645–677

    Google Scholar 

  • Dunne T, Mertes LAK, Meade RH, Richey JE, Forsberg BR (1998) Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geol Soc Am Bull 110:450–467

    Article  Google Scholar 

  • Elwood JW, Newbold JD, O’Neill RV, Van Winkle W (1980) Resource spiralling: an operational paradigm for analyzing lotic ecosystems. Stream Ecology Symposium, Augusta, GA

    Google Scholar 

  • Ensign SH, Doyle MW (2006) Nutrient spiraling in streams and river networks. J Geophys Res 111:G04009

    Article  CAS  Google Scholar 

  • Erskine W, Keene A, Bush R, Cheetham M, Chalmers A (2012) Influence of riparian vegetation on channel widening and subsequent contraction on a sand-bed stream since European settlement: Widden Brook, Australia. Geomorphology 147–148:102–114

    Article  Google Scholar 

  • Farnsworth KL, Milliman JD (2003) Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example. Glob Planet Chang 39:53–64

    Article  Google Scholar 

  • Fausch KD, Torgersen CE, Baxter CV, Li HW (2002) Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. Bioscience 52:483–498

    Article  Google Scholar 

  • Fisher SG, Grimm NB, Marti E, Holmes RM, Jones JB (1998) Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems 1:19–34

    Article  CAS  Google Scholar 

  • Friedman JM, Lee VJ (2002) Extreme floods, channel change, and riparian forests along ephemeral streams. Ecol Monogr 72:409–425

    Article  Google Scholar 

  • Fryirs KA (2016) River sensitivity: a lost foundation concept in fluvial geomorphology. Earth Surf Process Landf 42:55–70

    Article  Google Scholar 

  • Fryirs KA, Brierley GJ, Preston NJ, Kasai M (2007) Buffers, barriers and blankets: the (dis)connectivity of catchment-scale sediment cascades. Catena 70:49–67

    Article  Google Scholar 

  • Gende SM, Edwards RT, Willson MF, Wipfli MS (2002) Pacific salmon in aquatic and terrestrial ecosystems. Bioscience 52:917–928

    Article  Google Scholar 

  • Gomez B, Eden DN, Peacock DH, Pinkney EJ (1998) Floodplain construction by recent, rapid vertical accretion: Waipaoa River, New Zealand. Earth Surf Process Landf 23:405–413

    Article  Google Scholar 

  • Gooseff MN (2010) Defining hyporheic zones—advancing our conceptual and operational definitions of where stream water and groundwater meet. Geogr Compass 4:945–955

    Article  Google Scholar 

  • Gooseff MN, Hall RO, Tank JL (2007) Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resour Res 43:W01417

    Article  Google Scholar 

  • Graf WL (2001) Damage control: restoring the physical integrity of America’s rivers. Ann Assoc Am Geogr 91:1–27

    Article  Google Scholar 

  • Greene SL, Knox JC (2014) Coupling legacy geomorphic surface facies to riparian vegetation: assessing red cedar invasion along the Missouri River downstream of Gavins Point Dam, South Dakota. Geomorphology 204:277–286

    Article  Google Scholar 

  • Griffin ER, Kean JW, Vincent KR, Smith JD, Friedman JM (2005) Modeling effects of bank friction and woody bank vegetation on channel flow and boundary shear stress in the Rio Puerco, New Mexico. J Geophys Res 110:F04023. doi:10.1029/2005JF000322

    Google Scholar 

  • Gurnell AM (1998) The hydrogeomorphological effects of beaver dam-building activity. Prog Phys Geogr 22:167–189

    Google Scholar 

  • Harvey AM (2012) The coupling status of alluvial fans and debris cones: a review and synthesis. Earth Surf Process Landf 37:64–76

    Article  Google Scholar 

  • Harvey JW, Fuller CC (1998) Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance. Water Resour Res 34:623–636

    Article  CAS  Google Scholar 

  • Helfield JM, Capon SJ, Nilsson C, Jansson R, Palm D (2007) Restoration of rivers used for timber floating: effects on riparian plant diversity. Ecol Appl 17:840–851

    Article  Google Scholar 

  • Hester ET, Doyle MW (2008) In-stream geomorphic structures as drivers of hyporheic exchange. Water Resour Res 44:W03417. doi:10.1029/2006WR005810

    Article  Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Ann Rev Ecol Syst 4:1–23

    Article  Google Scholar 

  • Hygelund B, Manga M (2003) Field measurements of drag coefficients for model large woody debris. Geomorphology 51:175–185

    Article  Google Scholar 

  • Jeffries R, Darby SE, Sear DA (2003) The influence of vegetation and organic debris on flood-plain sediment dynamics: case study of a low-order stream in the New Forest, England. Geomorphology 51:61–80

    Article  Google Scholar 

  • John S, Klein A (2004) Hydrogeomorphic effects of beaver dams on floodplain morphology: avulsion processes and sediment fluxes in upland valley floors (Spessart, Germany). Quaternaire 15:219–231

    Article  Google Scholar 

  • Johnson LB, Breneman DH, Richards C (2003) Macroinvertebrate community structure and function associated with large wood in low gradient streams. River Res Appl 19:199–218

    Article  Google Scholar 

  • Johnston CA (2014) Beaver pond effects on carbon storage in soils. Geoderma 213:371–378

    Article  CAS  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The flood-pulse concept in river-floodplain systems. Can Spec Publ Fish Aquat Sci 106:110–127

    Google Scholar 

  • Kao SJ, Milliman JD (2008) Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J Geol 116:431–448

    Article  Google Scholar 

  • Keane RE, Hessburg PF, Landres PB, Swanson FJ (2009) The use of historical range and variability (HRV) in landscape management. For Ecol Manag 258:1025–1037

    Article  Google Scholar 

  • Kieffer SW (1989) Geologic nozzles. Rev Geophys 27:3–38

    Article  Google Scholar 

  • Korup O (2013) Landslides in the fluvial system. In: Wohl E (ed) Treatise on fluvial geomorphology. Treatise on geomorphology, vol 9. Academic, San Diego, pp 244–259

    Google Scholar 

  • Kramer N, Wohl E, Hess-Homeier B, Leisz S (2017) The pulse of driftwood export from a very large forested river basin over multiple time scales, Slave River, Canada. Water Resour Res 53:1928–1947

    Article  Google Scholar 

  • Kuhnle RA (2013) Suspended load. In: Wohl E (ed) Treatise on fluvial geomorphology. Treatise on geomorphology, vol 9. Academic, San Diego, pp 124–136

    Google Scholar 

  • Laenen A, Risley JC (1997) Precipitation-runoff and streamflow-routing models for the Willamette River basin, Oregon. U.S. Geological Survey Water Resources Investigations Report 95-4284. 197 pp

    Google Scholar 

  • Larsen A, May JH, Moss P, Hacker J (2016) Could alluvial knickpoint retreat rather than fire drive the loss of alluvial wet monsoon forest, tropical northern Australia? Earth Surf Process Landf 41:1583–1594

    Article  Google Scholar 

  • Lautz LK, Siegel DI (2007) The effect of transient storage on nitrate uptake lengths in streams: an inter-site comparison. Hydrol Process 21:3533–3548

    Article  CAS  Google Scholar 

  • Leopold LB, Maddock T (1953) The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey Professional Paper 252. Washington, DC, 56 pp

    Google Scholar 

  • Lichvar RW, Wakeley JS (2004) Review of ordinary high water mark indicators for delineating arid streams in the southwestern United States. Technical Reports, U.S. Army Engineer Waterways Experiment Station, Environmental Laboratory, TR-04.1. 127 pp

    Google Scholar 

  • Livers B, Wohl E (2016) Sources and interpretation of channel complexity in forested subalpine streams of the Southern Rocky Mountains. Water Resour Res 52:3910–3929

    Article  Google Scholar 

  • Lock MA, Wallace RR, Costerton JW, Ventullo RM, Charton SE (1984) River epilithon: toward a structural-functional model. Oikos 42:10–22

    Article  Google Scholar 

  • Lowrance R, Todd R, Fail J, Hendrickson O, Leonard R (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377

    Article  Google Scholar 

  • Luck M, Mauemenee N, Whited D et al (2010) Remote sensing analysis of physical complexity of North Pacific Rime rivers to assist wild salmon conservation. Earth Surf Process Landf 35:1330–1343

    Article  Google Scholar 

  • MacFarlane WA, Wohl E (2003) Influence of step composition on step geometry and flow resistance in step-pool streams of the Washington Cascades. Water Resour Res 39. doi:10.1029/2001WR001238

  • MacNally R, Parkinson A, Horrocks G, Conole L, Tzaros C (2001) Relationships between terrestrial vertebrate diversity, abundance and availability of coarse woody debris on south-eastern Australian floodplains. Biol Conserv 99:191–205

    Article  Google Scholar 

  • Martín-Vide JP, Amarilla M, Zárate FJ (2014) Collapse of the Pilcomayo River. Geomorphology 205:155–163

    Article  Google Scholar 

  • Massong TM, Montgomery DR (2000) Influence of sediment supply, lithology, and wood debris on the distribution of bedrock and alluvial channels. Geol Soc Am Bull 112:591–599

    Article  Google Scholar 

  • May CL, Gresswell RE (2003) Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA. Earth Surf Process Landf 28:409–424

    Article  Google Scholar 

  • May C, Roering J, Snow K, Griswold K, Greswell R (2017) The waterfall paradox: how knickpoints disconnect hillslope and channel processes, isolating salmonid populations in ideal habitats. Geomorphology 277:228–236

    Article  Google Scholar 

  • May RM (1977) Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269:471–477

    Article  Google Scholar 

  • McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312

    Article  CAS  Google Scholar 

  • Meade RH (2007) Transcontinental moving and storage: the Orinoco and Amazon Rivers transfer the Andes to the Atlantic. In: Gupta A (ed) Large rivers: geomorphology and management. Wiley, Chichester, pp 45–63

    Chapter  Google Scholar 

  • Meade RH, Dunne T, Richey JE, Santos UM, Salati E (1985) Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228:488–490

    Article  CAS  Google Scholar 

  • Meade RH, Moody JA (2010) Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2000. Hydrol Process 24:35–49

    Google Scholar 

  • Merritt DM (2013) Reciprocal relations between riparian vegetation, fluvial landforms, and channel processes. In: Wohl E (ed) Treatise on fluvial geomorphology. Elsevier, Amsterdam, pp 220–243

    Google Scholar 

  • Merritts DJ, Vincent KR, Wohl EE (1994) Long river profiles, tectonism, and eustasy: a guide to interpreting fluvial terraces. J Geophys Res 99(B7):14031–14050

    Article  Google Scholar 

  • Meyer GA, Wells SG, Balling RC, Jull AJT (1992) Response of alluvial systems to fire and climate change in Yellowstone National Park. Nature 357:147–150

    Article  Google Scholar 

  • Meyer JL, Kaplan LA, Newbold JD, Woltemade CJ, Zedler JB, Beilfuss R, Carpenter Q, Semlitsch R, Watzin MC, Zedler PH (2007) Where rivers are born: the scientific imperative for defending small streams and wetlands. Sierra Club, San Francisco

    Google Scholar 

  • Meyer JL, Wallace JB (2001) Lost linkages and lotic ecology: rediscovering small streams. In: Press MC, Huntly NJ, Levin S (eds) Ecology: achievement and challenge. Blackwell Science, Orlando, pp 295–317

    Google Scholar 

  • Miller JR, Friedman JM (2009) Influence of flow variability on floodplain formation and destruction, Little Missouri River, North Dakota. Geol Soc Am Bull 121:752–759

    Article  Google Scholar 

  • Minckley WL, Rinne JN (1985) Large woody debris in hot-desert streams: an historical review. Desert Plants 7:142–153

    Google Scholar 

  • Montgomery DR (1999) Process domains and the river continuum. J Am Water Resour Assoc 35:397–410

    Article  Google Scholar 

  • Montgomery DR, Collins BD, Buffington JM, Abbe TB (2003) Geomorphic effects of wood in rivers. In: Gregory SV, Boyer KL, Gurnell AM (eds) The ecology and management of wood in world rivers. American Fisheries Society Symposium, vol 37, Bethesda, pp 21–47

    Google Scholar 

  • Muehlbauer JD, Collins SF, Doyle MW, Tockner K (2014) How wide is a stream? Spatial extent of potential ‘stream signature’ in terrestrial food webs using meta-analysis. Ecology 95:44–55

    Article  Google Scholar 

  • Nadeau T-L, Rains MC (2007) Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. J Am Water Resour Assoc 43:118–133

    Article  Google Scholar 

  • Nadler CT, Schumm SA (1981) Metamorphosis of South Platte and Arkansas Rivers, eastern Colorado. Phys Geogr 2:95–115

    Google Scholar 

  • Naiman RJ, Melillo JM, Hobbie JE (1986) Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology 67:1254–1269

    Article  Google Scholar 

  • Naiman RJ, Johnston CA, Kelley JC (1988a) Alteration of North American streams by beaver. Bioscience 38:753–762

    Article  Google Scholar 

  • Naiman RJ, Decamps H, Pastor J, Johnston CA (1988b) The potential importance of boundaries to fluvial ecosystems. J N Am Benthol Soc 7:289–306

    Article  Google Scholar 

  • Naiman RJ, Decamps H, McClain ME (2005) Riparia: ecology, conservation, and management of streamside communities. Elsevier, Amsterdam

    Google Scholar 

  • Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci U S A 98:166–170

    Article  CAS  Google Scholar 

  • Nanson GC (1986) Episodes of vertical accretion and catastrophic stripping: a model of disequlibrium flood-plain development. Geol Soc Am Bull 97:1467–1475

    Article  Google Scholar 

  • Nanson GC, Croke JC (1992) A genetic classification of floodplains. Geomorphology 4:459–486

    Article  Google Scholar 

  • Newbold JD, Elwood JW, O’Neill RV, Van Winkle W (1981) Measuring nutrient spiralling in streams. Can J Fish Aquat Sci 38:860–863

    Article  Google Scholar 

  • Nihlgard BJ, Swank WT, Mitchell MJ (1994) Biological processes and catchment studies. In: Moldan B, Cerny J (eds) Biogeochemistry of small catchments: a tool for environmental research. Wiley, Chichester, pp 133–161

    Google Scholar 

  • Nilsson C, Lepori F, Malmqvist B, Törnlund E, Hjerdt N, Helfield JM, Palm D, Östergren J, Jansson R, Brännäs E, Lundqvist H (2005) Forecasting environmental responses to restoration of rivers used as log floatways: an interdisciplinary challenge. Ecosystems 8:779–800

    Article  Google Scholar 

  • O’Connor JE, Jones MA, Haluska TL (2003) Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA. Geomorphology 51:31–59

    Article  Google Scholar 

  • Omernik JM (2004) Perspectives on the nature and definition of ecological regions. Environ Manag 34:27–38

    Article  Google Scholar 

  • Osterkamp WR, Hedman ER (1977) Variation of width and discharge for natural high-gradient stream channels. Water Resour Res 13:256–258

    Article  Google Scholar 

  • Owens PN, Walling DE (2002) Changes in sediment sources and floodplain deposition rates in the catchment of the River Tweed, Scotland, over the last 100 years: the impact of climate and land use change. Earth Surf Process Landf 27:403–423

    Article  CAS  Google Scholar 

  • Palmer MA, Menninger HL, Bernhardt E (2010) River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw Biol 55:205–222

    Article  Google Scholar 

  • Parrish JD, Braun DP et al (2003) Are we conserving what we say we are? Measuring ecological integrity within protected areas. Bioscience 53:851–860

    Article  Google Scholar 

  • Pazzaglia FJ (2013) Fluvial terraces. In: Wohl E (ed) Treatise on fluvial geomorphology. Treatise on geomorphology, vol 9. Academic, San Diego, pp 379–412

    Google Scholar 

  • Peipoch M, Brauns M, Hauer RF, Weitere M, Valett HM (2015) Ecological simplification: human influences on riverscape complexity. Bioscience 65:1057–1065

    Article  Google Scholar 

  • Pettit NE, Naiman RJ (2006) Flood-deposited wood creates regeneration niches for riparian vegetation on a semiarid South African river. J Veg Sci 17:615–624

    Article  Google Scholar 

  • Phillips JD (2007) Perfection and complexity in the lower Brazos River. Geomorphology 91:364–377

    Article  Google Scholar 

  • Phillips JD (2014) State transitions in geomorphic responses to environmental change. Geomorphology 204:208–216

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47:769–784

    Article  Google Scholar 

  • Poff NL, Richter BD, Arthington AH, Bunn SE, Naiman RJ et al (2010) The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw Biol 55:147–170

    Article  Google Scholar 

  • Poff NL, Matthews JH (2013) Environmental flows in the Anthropocene: past progress and future prospects. Curr Opin Environ Sustain 5:667–675

    Article  Google Scholar 

  • Pollen N, Simon A (2005) Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour Res 41:W07025. doi:10.1029/2004WR003801

    Article  Google Scholar 

  • Pollock MM, Beechie TJ, Jordan CE (2007) Geomorphic changes upstream of beaver dams in Bridge Creek, an incised stream channel in the interior Columbia River basin, eastern Oregon. Earth Surf Process Landf 32:1174–1185

    Article  Google Scholar 

  • Pollock MM, Beechie TJ, Wheaton JM, Jordan CE, Bouwes N, Weber N, Volk C (2014) Using beaver dams to restore incised stream ecosystems. Bioscience 64:279–290

    Article  Google Scholar 

  • Polvi LE, Wohl E (2012) The beaver meadow complex revisited—the role of beavers in post-glacial floodplain development. Earth Surf Process Landf 37:332–346

    Article  Google Scholar 

  • Polvi LE, Wohl E (2013) Biotic drivers of stream planform: implications for understanding the past and restoring the future. Bioscience 63:439–452

    Article  Google Scholar 

  • Polvi LE, Nilsson C, Hasselquist EM (2014) Potential and actual geomorphic complexity of restored headwater streams in northern Sweden. Geomorphology 210:98–118

    Article  Google Scholar 

  • Poole GC (2002) Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshw Biol 47:641–660

    Article  Google Scholar 

  • Pringle CM (2001) Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl 11:981–998

    Article  Google Scholar 

  • Pringle CM, Naiman RJ, Bretschko G, Karr JR, Oswood MW, Webster JR, Welcomme RL, Winterbourn MJ (1988) Patch dynamics in lotic systems: the stream as a mosaic. J N Am Benthol Soc 7:503–524

    Article  Google Scholar 

  • Reid HE, Brierley GJ (2015) Assessing geomorphic sensitivity in relation to river capacity for adjustment. Geomorphology 251:108–121

    Article  Google Scholar 

  • Richmond AD, Fausch KD (1995) Characteristics and function of large woody debris in subalpine Rocky Mountain streams in northern Colorado. Can J Fish Aquat Sci 52:1789–1802

    Article  Google Scholar 

  • Richter BD, Baumgartner J, Powell J, Braun D (1996) A method for assessing hydrologic alteration within ecosystems. Conserv Biol 10:1163–1174

    Article  Google Scholar 

  • Ripple WJ, Beschta RL (2004) Wolves and the ecology of fear: can predation risk structure ecosystems? Bioscience 54:755–766

    Article  Google Scholar 

  • Sawyer AH, Cardenas MB, Buttles J (2011) Hyporheic exchange due to channel-spanning logs. Water Resour Res 47:W08502. doi:10.1029/2011WRR010484

    Article  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437. doi:10.1029/2006WR005486

    Google Scholar 

  • Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656

    Article  Google Scholar 

  • Schmidt JC, Wilcock PR (2008) Metrics for assessing the downstream effects of dams. Water Resour Res 44:W04404. doi:10.1029/2006WR005092

    Article  Google Scholar 

  • Schröder A, Persson L, De Roos AM (2005) Direct experimental evidence for alternative stable states: a review. Oikos 110:3–19

    Article  Google Scholar 

  • Schumm SA (1969) River metamorphosis. J Hydraul Div ASCE 95:255–273

    Google Scholar 

  • Schumm SA (1973) Geomorphic thresholds and complex response of drainage systems. In: Morisawa M (ed) Fluvial geomorphology. SUNY Binghamton, New York, pp 299–310

    Google Scholar 

  • Schumm SA (1979) Geomorphic thresholds: the concept and its applications. Trans Inst Br Geogr 4:485–515

    Article  Google Scholar 

  • Schumm SA, Hadley RF (1957) Arroyos and the semiarid cycle of erosion. Am J Sci 255:161–174

    Article  Google Scholar 

  • Scott ML, Skagen SK, Merigliano MF (2003) Relating geomorphic change and grazing to avian communities in riparian forests. Conserv Biol 17:284–296

    Article  Google Scholar 

  • Shields FD, Simon A, Steffen LJ (2000) Reservoir effects on downstream river channel migration. Environ Conserv 27:54–66

    Article  Google Scholar 

  • Sklar LS, Dietrich WE (2004) A mechanistic model for river incision into bedrock by saltating bed load. Water Resour Res 40:W06301. doi:10.1029/2003WR002496

    Article  Google Scholar 

  • Small MJ, Doyle MW, Fuller RL et al (2008) Hydrologic versus geomorphic limitation on CPOM storage in stream ecosystems. Freshw Biol 53:1618–1631

    Article  Google Scholar 

  • Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nature 335:64–66

    Article  Google Scholar 

  • Stock JD (2013) Waters divided: a history of alluvial fan research and a view of its future. In: Wohl E (ed) Treatise on fluvial geomorphology. Treatise on geomorphology, vol 9. Academic, San Diego, pp 413–458

    Google Scholar 

  • Suding KN, Gross KL, Houseman GR (2004) Alternative states and positive feedbacks in restoration ecology. Trends Ecol Evol 19:46–53

    Article  Google Scholar 

  • Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res Appl 22:123–147

    Article  Google Scholar 

  • Tockner K, Malard F, Ward JV (2000) An extension of the flood-pulse concept. Hydrol Process 14:2861–2883

    Article  Google Scholar 

  • Tonina D, Buffington JM (2009) Hyporheic exchange in mountain rivers I: mechanics and environmental effects. Geogr Compass 3:1063–1086

    Article  Google Scholar 

  • Trimble SW (2013) Historical agriculture and soil erosion in the Upper Mississippi Valley Hill Country. CRC Press, Boca Raton, p 242

    Google Scholar 

  • Trimble SW, Mendel AC (1995) The cow as a geomorphic agent—a critical review. Geomorphology 13:233–253

    Article  Google Scholar 

  • Triska FJ (1984) Role of wood debris in modifying channel geomorphology and riparian areas of a large lowland river under pristine conditions: a historical case study. Verh Int Ver Limnol 22:1876–1892

    Google Scholar 

  • U.S. Army Corps of Engineers (USACE) (2012) 2012 Nationwide permits, conditions, district engineer’s decision, further information, and definitions. http://www.usace.army.mil/Portals/2/docs/civilworks/nwp/2012/NWP2012_corrections_21-sep-2012.pdf

  • Van Breemen N, Boyer EW, Goodale CL, Jaworski NA, Paustian K, Seitzinger SP, Lajtha K et al (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry 57/58:267–293

    Article  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Wainwright J, Turnbull L, Ibrahim TG, Lexartza-Artza I, Thomas SF, Brazier RE (2011) Linking environmental regimes, space, and time: interpretations of structural and functional connectivity. Geomorphology 126:387–404

    Article  Google Scholar 

  • Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8:2–8

    Article  Google Scholar 

  • Ward JV (1992) A mountain river. In: Calow P, Petts GE (eds) The rivers handbook. Blackwell Science, Oxford, pp 493–510

    Google Scholar 

  • Ward JV, Stanford JA (1983) The serial discontinuity concept of lotic ecosystems. In: Fontaine TD, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor, pp 29–42

    Google Scholar 

  • Ward JV, Stanford JA (1995) The serial discontinuity concept: extending the model to floodplain rivers. Regul Rivers Res Manag 10:159–168

    Article  Google Scholar 

  • Ward JV, Tockner K, Schiemer F (1999) Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regul Rivers Res Manag 15:125–139

    Article  Google Scholar 

  • Webster JR, Patten BC (1979) Effects of watershed perturbation on stream potassium and calcium dynamics. Ecol Monogr 49:51–72

    Article  CAS  Google Scholar 

  • Webster JR, Waide JB, Pattern BC (1975) Nutrient recycling and the stability of ecosystems. In: Howell FG et al (eds) Mineral cycling in southeastern ecosystems. ERDA (CONF-740513), pp 1–27

    Google Scholar 

  • Werner BT, McNamara DE (2007) Dynamics of coupled human-landscape systems. Geomorphology 91:393–407

    Article  Google Scholar 

  • Westbrook CJ, Cooper DJ, Baker BW (2006) Beaver dams and overbank floods influence groundwater-surface water interactions of a Rocky Mountain riparian area. Water Resour Res 42:206404

    Article  Google Scholar 

  • Westbrook CJ, Cooper DJ, Butler DR (2013) Beaver hydrology and geomorphology. In: Butler DR, Hupp CR (eds) Ecogeomorphology. Treatise on geomorphology, vol 12. Academic, San Diego, pp 293–306

    Chapter  Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic, New York, pp 3–13

    Google Scholar 

  • White PS, Walker JL (1997) Approximating Nature’s variation: selecting and using reference information in restoration ecology. Restor Ecol 5:338–349

    Article  Google Scholar 

  • Wilcock PR, Kondolf GM, Matthews WVG, Barta AF (1996) Specification of sediment maintenance flows for a large gravel-bed river. Water Resour Res 32:3911–3921

    Google Scholar 

  • Williams GP (1978a) Bank-full discharge in rivers. Water Resour Res 14:1141–1154

    Article  Google Scholar 

  • Williams GP (1978b) The case of the shrinking channels—the North Platte and the Platte Rivers in Nebraska. U.S. Geological Survey Circular 781, Arlington, VA

    Google Scholar 

  • Wohl E (2002) Modeled paleoflood hydraulics as a tool for interpreting bedrock channel morphology. In: House PK, Webb RH, Baker VR, Levish DR (eds) Ancient Floods, modern hazards: principles and applications of paleoflood hydrology. American Geophysical Union Press, Washington, DC, pp 345–358

    Google Scholar 

  • Wohl E (2010) Analysing a natural system. In: Clifford N, French S, Valentine G (eds) Key methods in geography, 2nd edn. Sage, London, pp 253–273

    Google Scholar 

  • Wohl E (2011) Threshold-induced complex behavior of wood in mountain streams. Geology 39:587–590

    Article  Google Scholar 

  • Wohl E (2013) The complexity of the real world in the context of the field tradition in geomorphology. Geomorphology 200:50–58

    Article  Google Scholar 

  • Wohl E (2014a) A legacy of absence: wood removal in U.S. rivers. Prog Phys Geogr 38:637–663

    Article  Google Scholar 

  • Wohl E (2014b) Rivers in the landscape: science and management. Wiley Blackwell, Chichester

    Google Scholar 

  • Wohl E (2016) Spatial heterogeneity as a component of river geomorphic complexity. Prog Phys Geogr 40:598–615

    Article  Google Scholar 

  • Wohl E, Scott DN (2017) Wood and sediment storage and dynamics in river corridors. Earth Surf Process Landf 42:5–23

    Article  Google Scholar 

  • Wohl E, Dwire K, Sutfin N, Polvi L, Bazon R (2012) Mechanisms of carbon storage in mountainous headwater rivers. Nat Commun 3:1263. doi:10.1038/ncomms2274

    Article  CAS  Google Scholar 

  • Wohl E, Bledsoe BP, Jacobson RB, Poff NL, Rathburn SL, Walters DM, Wilcox AC (2015) The natural sediment regime in rivers: broadening the foundation for ecosystem management. Bioscience 65:358–371

    Article  Google Scholar 

  • Wohl E, Mersel MK, Allen AO, Fritz KM, Kichefski SL, Lichvar RW, Nadeau TL, Topping BJ, Trier PH, Vanderbilt FB (2016) Synthesizing the scientific foundation for ordinary high water mark delineation in fluvial systems. Cold Regions Research and Engineering Laboratory, U.S. Army Corps of Engineers, ERDC/CRREL SR-16-5, Washington, 198 pp

    Google Scholar 

  • Wohl EE (1992) Bedrock benches and boulder bars: floods in the Burdekin Gorge of Australia. Geol Soc Am Bull 104:770–778

    Article  Google Scholar 

  • Wolf EC, Cooper DJ, Hobbs NT (2007) Hydrologic regime and herbivory stabilize an alternative state in Yellowstone National Park. Ecol Appl 17:1572–1587

    Article  Google Scholar 

  • Wondzell SM, Swanson FJ (1996) Seasonal and storm dynamics of the hyporheic zone of a fourth-order mountain stream. 1. Hydrologic processes. J N Am Benthol Soc 15:3–19

    Article  Google Scholar 

  • Wondzell SM, LaNier J, Haggerty R, Woodsmith RD, Edwards RT (2009) Changes in hyporheic exchange flow following experimental wood removal in a small, low-gradient stream. Water Resour Res 45:W05406. doi:10.1029/2008WR007214

    Article  Google Scholar 

  • Woods SW, MacDonald LH, Westbrook CJ (2006) Hydrologic interactions between an alluvial fan and a slope wetland in the central Rocky Mountains, USA. Wetlands 26:230–243

    Article  Google Scholar 

  • World Wildlife Fund (WWF) (2013) Freshwater ecoregions of the world. http://www.feow.org/index.php

  • Yochum SE, Bledsoe BP, David GCL, Wohl E (2012) Velocity prediction in high-gradient channels. J Hydrol 424–425:84–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Wohl, E. (2018). Rivers as Ecosystems. In: Sustaining River Ecosystems and Water Resources. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-65124-8_2

Download citation

Publish with us

Policies and ethics