Skip to main content

Spatial Models of Population Processes

  • Conference paper
  • First Online:
Modern Problems of Stochastic Analysis and Statistics (MPSAS 2016)

Abstract

Recent progress has been made on spatial mathematical models of population processes. We review a few of these: the spatial Galton–Watson model, modern versions that add migration and immigration and thereby may avoid the increasing concentration of population into an ever smaller space (clusterization), models involving a random environment, and two versions of the Bolker–Pakala model, in which mortality (or birth rate) is affected by competition.

For the first author, this work has been funded by the Russian Academic Excellence Project ‘5-100’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bessonov, M., Molchanov, S., Whitmeyer, J.: A mean field approximation of the Bolker–Pacala population model. Markov Process. Relat. Fields 20, 329–348 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bolker, B.M., Pacala, S.W.: Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Nat. 153, 575–602 (1999)

    Article  Google Scholar 

  3. Bolker, B.M., Pacala, S.W., Neuhauser, C.: Spatial dynamics in model plant communities: what do we really know? Am. Nat. 162, 135–148 (2003)

    Article  Google Scholar 

  4. Debes, H., Kerstan, J., Liemant, A., Matthes, K.: Verallgemeinerungen eines Satzes von Dobruschin I. Math. Nachr. 47, 183–244 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dobrushin, R.L., Siegmund-Schultze, R.: The hydrodynamic limit for systems of particles with independent evolution. Math. Nachr. 105, 199–224 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. Wiley, New York (1968)

    MATH  Google Scholar 

  7. Galton, F.: Problem 4001. Educational Times 1(17) (April 1873)

    Google Scholar 

  8. Galton, F., Watson, H.W.: On the probability of the extinction of families. J. R. Anthr. Inst. 4, 138–144 (1874)

    Google Scholar 

  9. Gikhman, I.I., Skorokhod, A.V.: The Theory of Stochastic Processes. Springer, Berlin (1974)

    MATH  Google Scholar 

  10. Han, D., Molchanov, S., Whitmeyer, J.: Population Processes with Immigration

    Google Scholar 

  11. Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  12. Kendall, D.G.: Branching processes since 1873. J. Lond. Math. Soc. 41, 385–406 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolmogorov, A.N., Dmitriev, N.A.: Branching stochastic processes. Dokl. Akad. Nauk U.S.S.R. 56, 5–8 (1947)

    Google Scholar 

  14. Kolmogorov, A.N., Petrovskii, I.G., Piskunov, N.S.: A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Bull. Moscow Univ. Math. Ser. A 1, 1–25 (1937)

    Google Scholar 

  15. Kondratiev, Y.G., Skorokhod, A.V.: On contact processes in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9(2), 187–198 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kondratiev, Y., Kutoviy, O., Molchanov. S.: On population dynamics in a stationary random environment, U. of Bielefeld preprint

    Google Scholar 

  17. Kondratiev, Y., Kutovyi, O., Pirogov, S.: Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, 231–258 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liemant, A.: lnvariante zufallige Punktfolgen. Wiss. Z. Friedrich-Schiller-Univ. Jena 19, 361–372 (1969)

    MATH  Google Scholar 

  19. Malthus, T.R.: An Essay on the Principle of Population. John Murray, London (1826)

    Google Scholar 

  20. Molchanov, S.A., Yarovaya, E.B.: Branching processes with lattice spatial dynamics and a finite set of particle generation centers. Dokl. Akad. Nauk 446, 259–262 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Vandermeer, J., Perfecto, I., Philpott, S.M.: Clusters of ant colonies and robust criticality in a tropical agroecosystem. Nature 451, 457–459 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Whitmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Molchanov, S., Whitmeyer, J. (2017). Spatial Models of Population Processes. In: Panov, V. (eds) Modern Problems of Stochastic Analysis and Statistics. MPSAS 2016. Springer Proceedings in Mathematics & Statistics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-65313-6_17

Download citation

Publish with us

Policies and ethics