Skip to main content

Why Archaea Are Limited in Their Exploitation of Other, Living Organisms

  • Chapter
  • First Online:
Biocommunication of Archaea

Abstract

Only a handful of Archaea have been suggested to be connected with pathologies or to serve as parasites, and none conclusively. Here I consider what might limit the potential for Archaea to serve as exploiters of other, living organisms. I suggest that this dearth may be a consequence of multiple factors which have a combined impact rather than any one factor serving as a ‘smoking gun’. These factors should be viewed as hypotheses, further exploration of which may be helpful towards refinement of considerations of just what may serve to limit the occurrence of Archaea serving as pathogens. I suggest as well that a spectrum likely exists in which eukaryotes—among the three cellular domains—are most frequently exploitive of other species while Archaea are the least. Bacteria, when serving especially as pathogens but also as predators, in turn display an intermediate propensity to exploit other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST (2013) Are archaeons incapable of being parasites or have we simply failed to notice? Bioessays: news and reviews in molecular. Cell Dev Biol 35:501

    Google Scholar 

  • Aller JY, Kemp PF (2008) Are archaea inherently less diverse than bacteria in the same environments? FEMS Microbiol Ecol 65:74–87

    Article  CAS  PubMed  Google Scholar 

  • Aminov RI (2013) Role of archaea in human disease. Front Cell Infect Microbiol 3:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrei AS, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9

    Article  CAS  PubMed  Google Scholar 

  • Andrei AS, Robeson MS, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora CI, Podar M, Banciu HL (2015) Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME J 9:2642–2656

    Article  PubMed  PubMed Central  Google Scholar 

  • Bang C, Schmitz RA (2015) Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 39:631–648

    Article  PubMed  Google Scholar 

  • Barash I, Manulis-Sasson S (2009) Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annu Rev Phytopathol 47:133–152

    Article  CAS  PubMed  Google Scholar 

  • Baricz A, Coman C, Andrei AS, Muntean V, Keresztes ZG, Pausan M, Alexe M, Banciu HL (2014) Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania). Extremophiles 18:399–413

    Article  CAS  PubMed  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Waters WA, Knight R, Fierer N (2011) Examining the global distrbiution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  PubMed  Google Scholar 

  • Bokhari H, Anwar M, Mirza HB, Gillevet PM (2011) Evidences of lateral gene transfer between archaea and pathogenic bacteria. Bioinformation 6:293–296

    Article  PubMed  PubMed Central  Google Scholar 

  • Borrel G, Lehours AC, Crouzet O, Jezequel D, Rockne K, Kulczak A, Duffaud E, Joblin K, Fonty G (2012) Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured archaeal lineages. PLoS ONE 7:e43346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SP, Inglis RF (2009) Evolutionary ecology of microbial wars: within-host competition and (incidental) virulence. Evol Appl 2:32–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Buée M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212

    Article  Google Scholar 

  • Calcagno V, Dubosclard M, de MC (2010) Rapid exploiter-victim coevolution: the race is not always to the swift. Am Nat 176:198–211

    Google Scholar 

  • Cao P, Zhang LM, Shen JP, Zheng YM, Di HJ, He JZ (2012) Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol Ecol 80:146–158

    Article  CAS  PubMed  Google Scholar 

  • Casadevall A, Pirofski LA (2000) Host-pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infect Immun 68:6511–6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R, Curmi PM (2004) Response to William Martin’s letter. Bioessays 26:593

    Google Scholar 

  • Cavicchioli R, Curmi PM, Saunders N, Thomas T (2003) Pathogenic archaea: do they exist? Bioessays (News and Reviews In Molecular Cellular and Developmental Biology) 25:1119–1128

    Article  CAS  Google Scholar 

  • Chaban B, Ng SY, Jarrell KF (2006) Archaeal habitats—from the extreme to the ordinary. Can J Microbiol 52:73–116

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi IG, Kim SH (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104:4489–4494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie GE, Allison HA, Kuzio J, McShan M, Waldor MK, Kropinski AM (2012) Prophage-induced changes in cellular cytochemistry and virulence. In: Hyman P, Abedon ST (eds) Bacteriophages in health and disease. CABI Press, Wallingford, pp 33–60

    Chapter  Google Scholar 

  • Conway de Macario E, Macario AJL (2009) Methanogenic archaea in health and disease: a novel paradigm of microbial pathogenesis. Int J Med Microbiol 299:99–108

    Article  PubMed  Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  PubMed  Google Scholar 

  • DeLong EF, Taylor LT, Marsh TL, Preston CM (1999) Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl Environ Microbiol 65:5554–5563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckburg PB, Lepp PW, Relman DA (2003) Archaea and their potential role in human disease. Infect Immun 71:591–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science (New York, N Y) 308:1635–1638

    Google Scholar 

  • Ewald PW (2004) Evolution of virulence. Infect Dis Clin North Am 18:1–15

    Article  PubMed  Google Scholar 

  • Faguy DM (2003) Lateral gene transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease. BMC Infect Dis 3:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Fellous S, Salvaudon L (2009) How can your parasites become your allies? Trends Parasitol 25:62–66

    Article  PubMed  Google Scholar 

  • Fredriksson NJ, Hermansson M, Wilen BM (2012) Diversity and dynamics of archaea in an activated sludge wastewater treatment plant. BMC Microbiol 12:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredriksson NJ, Hermansson M, Wilen BM (2013) The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 8:e76431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannone RJ, Wurch LL, Heimerl T, Martin S, Yang Z, Huber H, Rachel R, Hettich RL, Podar M (2015) Life on the edge: functional genomic response of Ignicoccus hospitalis to the presence of Nanoarchaeum equitans. ISME J 9:101–114

    Google Scholar 

  • Gill EE, Brinkman FS (2011) The proportional lack of archaeal pathogens: Do viruses/phages hold the key? Bioessays 33:248–254

    Google Scholar 

  • Golyshina OV, Lunsdorf H, Kublanov IV, Goldenstein NI, Hinrichs KU, Golyshin PN (2016) The novel extremely acidophilic, cell-wall-deficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam. nov., of the order Thermoplasmatales. Int J Syst Evol Microbiol 66:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gophna U, Charlebois RL, Doolittle WF (2004) Have archaeal genes contributed to bacterial virulence? Trends Microbiol 12:213–219

    Article  CAS  PubMed  Google Scholar 

  • Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794

    Article  CAS  PubMed  Google Scholar 

  • Groussin M, Boussau B, Szollosi G, Eme L, Gouy M, Brochier-Armanet C, Daubin V (2016) Gene acquisitions from bacteria at the origins of major archaeal clades are vastly overestimated. Mol Biol Evol 33:305–310

    Article  CAS  PubMed  Google Scholar 

  • Hagman M, Nielsen JL, Nielsen PH, Jansen J (2008) Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Res 42:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Herndl GJ, Reinthaler T, Teira E, van AH, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309

    Google Scholar 

  • Holder T, Basquin C, Ebert J, Randel N, Jollivet D, Conti E, Jekely G, Bono F (2013) Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Biol Direct 8:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horz HP, Conrads G (2010) The discussion goes on: what is the role of Euryarchaeota in humans? Archaea 2010:967271

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J Bacteriol 190:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80:305–311

    Article  CAS  PubMed  Google Scholar 

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature (London) 409:507–510

    Article  CAS  Google Scholar 

  • Klappenbach JA, Saxman PR, Cole JR, Schmidt TM (2001) rrndb: the ribosomal RNA operon copy number database. Nucl Acids Res 29:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane N, Martin W (2010) The energetics of genome complexity. Nature (London) 467:929–934

    Article  CAS  Google Scholar 

  • Lange M, Westermann P, Ahring BK (2005) Archaea in protozoa and metazoa. Appl Microbiol Biotechnol 66:465–474

    Article  CAS  PubMed  Google Scholar 

  • Lawrence JG, Hendrickson H (2008) Genomes in motion: gene transfer as a catalyst for genome change. Horizontal gene transfer in the evolution of pathogenesis. Cambridge University Press, Cambridge, pp 3–22

    Book  Google Scholar 

  • LeClerc JE, Li B, Payne WL, Cebula TA (1996) High mutation frequencies among Escherichia coli and Salmonella pathogens. Science (New York, N Y) 274:1208–1211

    Google Scholar 

  • Lee ZM, Bussema C III, Schmidt TM (2009) rrnDB: documenting the number of rRNA and tRNA genes in bacteria and archaea. Nucl Acids Res 37:D489–D493

    Article  CAS  PubMed  Google Scholar 

  • Leggett HC, Cornwallis CK, West SA (2012) Mechanisms of pathogenesis, infective dose and virulence in human parasites. PLoS Pathog 8:e1002512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin LA (2010) Anaerobic metazoans: no longer an oxymoron. BMC Biol 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Li WKW, Dickie PM, Irwin BD, Wood AM (1992) Biomass of bacteria, cyanobacteria, prochlorophytes and photosynthetic eukaryotes in the Sargasso Sea. Deep Sea Res Part A (Oceanographic Research Papers) 39:501–519

    Article  Google Scholar 

  • Li J, Zhou H, Fang J, Sun Y, Dasgupta S (2014) Microbial distribution in different spatial positions within the walls of a black sulfide hydrothermal chimney. Mar Ecol Prog Ser 508:67–85

    Article  CAS  Google Scholar 

  • Li D, Wang P, Wang P, Hu X, Chen F (2016) The gut microbiota: a treasure for human health. Biotechnol Adv 34:1210–1224

    Article  PubMed  Google Scholar 

  • Lipp JS, Morono Y, Inagaki F, Hinrichs KU (2008) Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature (London) 454:991–994

    Article  CAS  Google Scholar 

  • Liu LJ, You XY, Guo X, Liu SJ, Jiang CY (2011) Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 61:2395–2400

    Article  CAS  PubMed  Google Scholar 

  • López-García P, Zivanovic Y, Deschamps P, Moreira D (2015) Bacterial gene import and mesophilic adaptation in archaea. Nat Rev Microbiol 13:447–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Lurie-Weinberger MN, Gophna U (2015) Archaea in and on the human body: health implications and future directions. PLoS Pathog 11:e1004833

    Article  PubMed  PubMed Central  Google Scholar 

  • Lurie-Weinberger MN, Peeri M, Gophna U (2012a) Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen. Genomics 99:52–58

    Article  CAS  PubMed  Google Scholar 

  • Lurie-Weinberger MN, Peeri M, Tuller T, Gophna U (2012b) Extensive inter-domain lateral gene transfer in the evolution of the human commensal methanosphaera stadtmanae. Front Genet 3:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch M (2010) Evolution of the mutation rate. Trends Genet 26:345–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin W (2004) Pathogenic archaebacteria: do they not exist because archaebacteria use different vitamins? Bioessays 26:592–593

    Google Scholar 

  • Miller-Coleman RL, Dodsworth JA, Ross CA, Shock EL, Williams AJ, Hartnett HE, McDonald AI, Havig JR, Hedlund BP (2012) Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning. PLoS ONE 7:e35964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moissl-Eichinger C, Huber H (2011) Archaeal symbionts and parasites. Curr Opin Mirobiol 14:364–370

    Article  Google Scholar 

  • Moxon R, Tang C (2000) Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 355:643–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF (2012) Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, DeLong EF (1998) Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen-Hieu T, Khelaifia S, Aboudharam G, Drancourt M (2013) Methanogenic archaea in subgingival sites: a review. APMIS 121:467–477

    Article  PubMed  Google Scholar 

  • Nkamga VD, Henrissat B, Drancourt M (2016) Archaea: essential inhabitants of the human digestive microbiota. Hum Microbiome J 3:1–8

    Article  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature (London) 405:299–304

    Article  CAS  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  CAS  PubMed  Google Scholar 

  • Pal C, Macia MD, Oliver A, Schachar I, Buckling A (2007) Coevolution with viruses drives the evolution of bacterial mutation rates. Nature (London) 450:1079–1081

    Article  CAS  Google Scholar 

  • Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature (London) 449:835–842

    Article  CAS  Google Scholar 

  • Pape T, Hoffmann F, Quéric N-V, von Juterzenka K, Reitner J, Michaelis W (2006) Dense populations of Archaea associated with demosponge Tentorium semisuberites Schmidt, 1870 from Arctic deep-waters. Polar Biol 29:662–667

    Article  Google Scholar 

  • Park JS, Simpson AG, Lee WJ, Cho BC (2007) Ultrastructure and phylogenetic placement within Heterolobosea of the previously unclassified, extremely halophilic heterotrophic flagellate Pleurostomum flabellatum (Ruinen 1938). Protist 158:397–413

    Article  CAS  PubMed  Google Scholar 

  • Park JS, De Jonckheere JF, Simpson AG (2012) Characterization of Selenaion koniopes n. gen., n. sp., an amoeba that represents a new major lineage within heterolobosea, isolated from the Wieliczka salt mine. J Eukaryot Microbiol 59:601–613

    Article  PubMed  Google Scholar 

  • Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature (London) 464:275–278

    Article  CAS  Google Scholar 

  • Perevalova AA, Kublanov IV, Bidzhieva SK, Mukhopadhyay B, Bonch-Osmolovskaya EA, Lebedinsky AV (2016) Reclassification of Desulfurococcus mobilis as a synonym of Desulfurococcus mucosus, Desulfurococcus fermentans and Desulfurococcus kamchatkensis as synonyms of Desulfurococcus amylolyticus, and emendation of the D. mucosus and D. amylolyticus species descriptions. Int J Syst Evol Microbiol 66:514–517

    Article  CAS  PubMed  Google Scholar 

  • Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchison D, Eads JR, Anderson A, Fernandes F, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO (2008) A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 9:R158

    Article  PubMed  PubMed Central  Google Scholar 

  • Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL (2013) Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct 8:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieur D (2002) Hydrothermal vents: prokaryotes in deep-sea hydrothermal vents. Encycl Environ Microbiol 1617–1628

    Google Scholar 

  • Raskin DM, Seshadri R, Pukatzki SU, Mekalanos JJ (2006) Bacterial genomics and pathogen evolution. Cell 124:703–714

    Article  CAS  PubMed  Google Scholar 

  • Reeve JN (1999) Archaebacteria then … Archaes now (are there really no archaeal pathogens?). J Bacteriol 181:3613–3617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reitschuler C, Lins P, Wagner AO, Illmer P (2014) Cultivation of moonmilk-born non-extremophilic Thaum and Euryarchaeota in mixed culture. Anaerobe 29:73–79

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Perez JI, Gonzalez AA, Toranzos GA (2017) From evolutionary advantage to disease agents: forensic reevaluation of host-microbe interactions and pathogenicity. Microbiol Spectr 5:EMF-0009-2016

    Google Scholar 

  • Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saengkerdsub S, Ricke SC (2013) Ecology and characteristics of methanogenic archaea in animals and humans. Crit Rev Microbiol

    Google Scholar 

  • Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662

    Article  CAS  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molfsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Seger J (1992) Evolution of exploiter–victim relationships. In: Crawley MJ (ed) Natural enemies. The population biology of predators, parasites and diseases. Blackwell Scientific, Oxford, pp 3–25

    Google Scholar 

  • Selig M, Schönheit P (1994) Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Arch Microbiol 162:286–294

    Article  CAS  Google Scholar 

  • Shiffman ME, Charalambous BM (2012) The search for archaeal pathogens. Rev Med Microbiol 23:45–51

    Google Scholar 

  • Sinclair JL, Ghiorse WC (1987) Distribution of protozoa in subsurface sediments of a pristine groundwater study site in Oklahoma. Appl Environ Microbiol 53:1157–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smets BF, Lardon L (2009) Mass action models describing extant horizontal transfer of plasmids: inferences and parameter sensitivities. Meth Mol Biol 532:289–305

    Article  CAS  Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Kawasaki K, Daimon S, Kitagawa W, Yamamoto K, Tamaki H, Tanaka M, Nakatsu CH, Kamagata Y (2014) A hidden pitfall in the preparation of agar media undermines microorganism cultivability. Appl Environ Microbiol 80:7659–7666

    Article  PubMed  PubMed Central  Google Scholar 

  • Turkarslan S, Reiss DJ, Gibbins G, Su WL, Pan M, Bare JC, Plaisier CL, Baliga NS (2011) Niche adaptation by expansion and reprogramming of general transcription factors. Mol Syst Biol 7:554

    Article  PubMed  PubMed Central  Google Scholar 

  • Uroz S, Oger P, Tisserand E, Cebron A, Turpault MP, Buee M, De BW, Leveau JH, Frey-Klett P (2016) Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci Rep 6:27756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urschel MR, Kubo MD, Hoehler TM, Peters JW, Boyd ES (2015) Carbon source preference in chemosynthetic hot spring communities. Appl Environ Microbiol 81:3834–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323

    Article  CAS  PubMed  Google Scholar 

  • Wassenaar TM, Gaastra W (2001) Bacterial virulence: can we draw the line? FEMS Microbiol Lett 201:1–7

    Article  CAS  PubMed  Google Scholar 

  • Welte C, Deppenmeier U (2011) Proton translocation in methanogens. Methods Enzymol 494:257–280

    Article  CAS  PubMed  Google Scholar 

  • Wrede C, Dreier A, Kokoschka S, Hoppert M (2012) Archaea in symbioses. Archaea 2012:596846

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, Fan H, Ventosa A, Grant WD, Jones BE, Cowan DA, Ma Y (2005) Halalkalicoccus tibetensis gen. nov., sp. nov., representing a novel genus of haloalkaliphilic archaea. Int J Syst Evol Microbiol 55:2501–2505

    Article  CAS  PubMed  Google Scholar 

  • Yau S, Lauro FM, Williams TJ, Demaere MZ, Brown MV, Rich J, Gibson JA, Cavicchioli R (2013) Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. ISME J 7:1944–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebuhr W, Hennig S, Eckart M, Kranzler H, Batzilla C, Kozitskaya S (2006) Nosocomial infections by Staphylococcus epidermidis: how a commensal bacterium turns into a pathogen. Int J Antimicrob Agents 28(Suppl 1):S14–S20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to John Reeve for both introducing me to the issue of rarity of pathogens among Archaea and also for helpful discussion of the ideas presented in this and a previously published essay on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Abedon, S.T. (2017). Why Archaea Are Limited in Their Exploitation of Other, Living Organisms. In: Witzany, G. (eds) Biocommunication of Archaea. Springer, Cham. https://doi.org/10.1007/978-3-319-65536-9_4

Download citation

Publish with us

Policies and ethics