Skip to main content

Introduction

  • Chapter
  • First Online:
Elements of Neurogeometry

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

  • 856 Accesses

Abstract

This general introduction focuses on the origin of spatial representations, the structures of perception, cognitive sciences, and the way the neurogeometry of vision fits into them.

Without a proper shape mathematics for biology, we are in the position that physics would have been in trying to develop mechanics without Euclidean geometry.

Harry Blum

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Named after Niels Henrik Abel.

  2. 2.

    Among many other works, see, for example, the classic Space, Time, Matter by Weyl [1], the proceedings [2], the book by Toretti [3], the studies [4] and [5] by Thomas Ryckman , or our own review of non-commutative geometry [6].

  3. 3.

    ‘Tatsachen’ or ‘facts’ are contrasted with ‘Hypothesen’.

  4. 4.

    This is a clear reference to Kant’s opposition between sensibility and understanding.

  5. 5.

    For the relations between Mathematics and Physics in Poincaré, see La Valeur de la Science [16].

  6. 6.

    See Sect. 1.1 of the Introduction.

  7. 7.

    This problem already arose with the invention of rational mechanics. In order to mathematize the physical motions of material points, one must choose a frame of reference. But neither absolute positions, nor absolute directions , nor absolute velocities have any physical meaning, hence the advent of Galilean relativity.

  8. 8.

    Named after Joseph-Louis Lagrange.

  9. 9.

    See, for example, Marre [21].

  10. 10.

    However, in Sect. 4.7.3 of Chap. 4, we shall discuss the latest methods of two-photon confocal microscopy, which can in fact distinguish individual neurons.

  11. 11.

    There are many excellent introductory Websites to find out about cognitive science, such as The MIT Encyclopedia of the Cognitive Sciences [22].

  12. 12.

    For an introduction to this scientific revolution, the reader is referred to the reflections of Dupuy [23].

  13. 13.

    This is actually a common theme throughout the history of science. From Galileo and Newton , we learnt that types of motion as apparently disparate as ‘sublunar’ ballistic motions and ‘superlunar’ celestial motions could be understood using a single mathematical theory, the universal theory of gravitation. This formal similarity between empirical areas hitherto considered to be ontologically incommensurable was once culturally traumatic, but it eventually became commonplace in science. The same can be said here. For example, the fact that neural networks carrying out cognitive operations of categorization are formally analogous to spin glasses may look quite bewildering, given the gulf that separates these two ontologically incommensurable areas. But it is already a scientific commonplace for the young generation.

  14. 14.

    These are Gabor patches, not geometric segments, as we shall explain.

References

  1. Weyl, H.: Space-Time-Matter. Dover, New York (1922)

    MATH  Google Scholar 

  2. Boi, L., Flament, D., Salanskis, J.-M. (eds.): 1830–1930: A century of geometry. In: Epistemology, History, Mathematics. Springer, Berlin (1992)

    Google Scholar 

  3. Toretti, R.: Philosophy of Geometry from Riemann to Poincaré, 2nd edn. Reidel, Dordrecht (1984)

    Google Scholar 

  4. Ryckman, T.: The Reign of Relativity. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  5. Ryckman, T.: Hermann Weyl and ‘first philosophy’: constituting gauge invariance. In: Bitbol, M., Kerszberg, P., Petitot, J. (eds.) Constituting Objectivity, Transcendental Perspectives on Modern Physics, pp. 279–298. Springer, Berlin (2009)

    Google Scholar 

  6. Petitot, J.: Noncommutative geometry and transcendental physics. In: Bitbol, M., Kerszberg, P., Petitot, J. (eds.) Constituting Objectivity. Transcendental Perspectives on Modern Physics, pp. 415–455. Springer, Berlin (2009)

    Google Scholar 

  7. Souriau, J.M.: Géométrie symplectique et physique mathématique (Colloques Internationaux du CNRS 237) Paris (1975)

    Google Scholar 

  8. Petitot, J.: Actuality of Transcendental Aesthetics for Modern Physics. In: Boi, L., Flament, D., Salanskis, J.-M. (eds.) 1830–1930: A Century of Geometry, pp. 273–304. Springer, Berlin (1992)

    Google Scholar 

  9. Riemann, B.: Über die Hypothesen, welche der Geometrie zu Grunde liegen (1854). In: Dedekind R., Weber, F. (eds.) Bernhard Riemanns Gesammelte Mathematische Werke, pp. 272–287. Druck und Verlag von B.G. Teubner, Leipzig (1892)

    Google Scholar 

  10. Helmholtz, H. von.: Über die Tatsachen, die der Geometrie zu Grunde liegen (1868). In: Wissenschaftliche Abhandlungen, vol. II, pp. 618–639. Barth, J.A., Leipzig (1883). English Edition in Epistemological Writings, pp. 39–58. Reidel, Dordrecht (1977)

    Google Scholar 

  11. Merker, J.: Le problème de l’espace. Sophus Lie, Friedrich Engel et le problème de Riemann-Helmholtz, Hermann, Paris (2010)

    Google Scholar 

  12. Engel, F., Lie, S.: Theorie der Transformationsgruppen, Erster-Zweiter-Dritter und Letzter Abschnitt, Teubner, Leipzig, Berlin, 1888, 1890, 1890. Reprinted by Chelsea Publishing Co, New York (1970)

    Google Scholar 

  13. Lie, S.: Theorie der Transformationsgruppen, I., Mathematische Annalen, 16, 441–528 (1880). English Translation: Ackermann, M., Hermann, R. Sophus Lie’s 1880 Transformation Group paper, Mathematical Science Press, Brookline, MA (1975)

    Google Scholar 

  14. Poincaré, H.: La Science et l’Hypothèse, Flammarion, Paris, 1902. Republished with a Preface by J. Vuillemin (1968)

    Google Scholar 

  15. Poincaré, H.: Science et Méthode, Flammarion, Paris, 1908. Republished in Philosophia Scientiae, Kimé, Paris (1999)

    Google Scholar 

  16. Poincaré, H.: La Valeur de la Science, Flammarion, Paris, 1905. Republished with a Preface by J. Vuillemin (1970)

    Google Scholar 

  17. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press, Oxford (1978)

    Google Scholar 

  18. Mumford, D.: Pattern theory: A unifying perspective. In: Knill, D.C., Richards, W. (eds.) Perception as Bayesian inference, pp. 25–62. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  19. Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.F.: The role of primary visual cortex in higher level vision. Vis. Res. 38, 2429–2454 (1998)

    Article  Google Scholar 

  20. Hodgkin, A.L., Huxley, A.F.: Currents carried out sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  21. Marre, O.: Irregular but reliable activity in recurrent cortical networks: A theoretical and intracellular study in the primary visual cortex. PhD, Ecole Polytechnique (2008)

    Google Scholar 

  22. Wilson, R.A., Keil, F. (eds.): The MIT Encyclopedia of the Cognitive Sciences. MIT Press, Cambridge, MA

    Google Scholar 

  23. Dupuy, J.-P.: Mechanization of the Mind: On the Origins of Cognitive Sciences. Princeton University Press, Princeton (2000)

    Google Scholar 

  24. Hess, R.F., Hayes, A., Field, D.J.: Contour integration and cortical processing. In: Petitot, J., Lorenceau, J. (eds.) Neurogeometry and Visual Perception, pp. 105–119. J. Physiol. 97, 2–3 (2003)

    Google Scholar 

  25. Bressloff, P., Cowan, J., Golubitsky, M., Thomas, P., Wiener, M.: Geometric visual hallucinations. Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. B 356, 299–330 (2001)

    Google Scholar 

  26. Blum, H.: Biological shape and visual science. J. Theoret. Biol. 38, 205–287 (1973)

    Google Scholar 

  27. Thom, R.: Modèles mathématiques de la morphogenèse. Bourgois, Paris (1980)

    MATH  Google Scholar 

  28. Kimia, B.B.: On the role of medial geometry in human vision. In: Petitot, J., Lorenceau, J. (eds.) Neurogeometry and Visual Perception, pp. 155–190. J. Physiol. 97, 2–3 (2003)

    Google Scholar 

  29. Lee, T.S.: Computations in the early visual cortex. In: Petitot, J., Lorenceau, J. (eds.) Neurogeometry and Visual Perception, pp. 121–139. J. Physiol. 97, 2–3 (2003)

    Google Scholar 

  30. Jancke, D., Chavane, F., Naaman, S., Grinvald, A.: Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Petitot .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petitot, J. (2017). Introduction. In: Elements of Neurogeometry. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-65591-8_2

Download citation

Publish with us

Policies and ethics