Skip to main content

Large Deviations for Sparse Graphs

  • Chapter
  • First Online:
Large Deviations for Random Graphs

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2197))

  • 2238 Accesses

Abstract

The results of the previous chapters were derived using tools from graph limit theory. This theory, however, is inadequate for understanding the behavior of sparse graphs. The goal of this chapter is to describe an alternative approach, called nonlinear large deviations, that allows us to prove similar results for sparse graphs. Nonlinear large deviation theory gives a way of getting quantitative error bounds in some of the large deviation theorems proved in earlier chapters. The quantitative error bounds make it possible to extend the results to the sparse regime. At the time of writing this monograph, this theory is not as well-developed as the theory for dense graphs, but developed enough to make some progress about sparse graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharya, B. B., Ganguly, S., Lubetzky, E., & Zhao, Y. (2015). Upper tails and independence polynomials in random graphs. arXiv preprint arXiv:1507.04074.

    Google Scholar 

  2. Bollobás, B., & Riordan, O. (2009). Metrics for sparse graphs. In Surveys in combinatorics 2009. London Mathematical Society Lecture Note Series (vol. 365, pp. 211–287). Cambridge: Cambridge Univeristy Press.

    Google Scholar 

  3. Borgs, C., Chayes, J. T., Cohn, H., & Zhao, Y. (2014). An L p theory of sparse graph convergence I: Limits, sparse random graph models, and power law distributions. arXiv preprint arXiv:1401.2906.

    Google Scholar 

  4. Borgs, C., Chayes, J. T., Cohn, H., & Zhao, Y. (2014). An L p theory of sparse graph convergence II: LD convergence, quotients, and right convergence. arXiv preprint arXiv:1408.0744.

    Google Scholar 

  5. Chatterjee, S. (2005). Concentration inequalities with exchangeable pairs. Ph.D. thesis, Stanford University.

    Google Scholar 

  6. Chatterjee, S. (2007). Stein’s method for concentration inequalities. Probability Theory and Related Fields, 138(1–2), 305–321.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatterjee, S. (2012). The missing log in large deviations for triangle counts. Random Structures & Algorithms, 40(4), 437–451.

    Article  MathSciNet  MATH  Google Scholar 

  8. Chatterjee, S., & Dembo, A. (2016). Nonlinear large deviations. Advances in Mathematics, 299, 396–450.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chatterjee, S., & Dey, P. S. (2010). Applications of Stein’s method for concentration inequalities. Annals of Probability, 38, 2443–2485.

    Article  MathSciNet  MATH  Google Scholar 

  10. DeMarco, B., & Kahn, J. (2012). Upper tails for triangles. Random Structures & Algorithms, 40(4), 452–459.

    Article  MathSciNet  MATH  Google Scholar 

  11. DeMarco, B., & Kahn, J. (2012). Tight upper tail bounds for cliques. Random Structures & Algorithms, 41(4), 469–487.

    Article  MathSciNet  MATH  Google Scholar 

  12. Eldan, R. (2016). Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear large deviations. arXiv preprint arXiv:1612.04346.

    Google Scholar 

  13. Janson, S., Oleszkiewicz, K., & Ruciński, A. (2004). Upper tails for subgraph counts in random graphs. Israel Journal of Mathematics, 142, 61–92.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, J. H., & Vu, V. H. (2000). Concentration of multivariate polynomials and its applications. Combinatorica, 20(3), 417–434.

    Article  MathSciNet  MATH  Google Scholar 

  15. Kim, J. H., & Vu, V. H. (2004). Divide and conquer martingales and the number of triangles in a random graph. Random Structures & Algorithms, 24(2), 166–174.

    Article  MathSciNet  MATH  Google Scholar 

  16. Latała, R. (1997). Estimation of moments of sums of independent real random variables. Annals of Probability, 25(3), 1502–1513.

    Article  MathSciNet  MATH  Google Scholar 

  17. Lubetzky E., & Zhao, Y. (2017). On the variational problem for upper tails of triangle counts in sparse random graphs. Random Structures & Algorithms, 50(3), 420–436.

    Article  MathSciNet  MATH  Google Scholar 

  18. McDiarmid, C. (1989). On the method of bounded differences. In J. Siemons (Ed.), Surveys in combinatorics. London Mathematical Society Lecture Note Series (vol. 141, pp. 148–188). Cambridge: Cambridge Univeristy Press.

    Google Scholar 

  19. Talagrand, M. (1995). Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 81, 73–205.

    Article  MathSciNet  MATH  Google Scholar 

  20. Vu, V. H. (2002). Concentration of non-Lipschitz functions and applications. Probabilistic methods in combinatorial optimization. Random Structures & Algorithms, 20(3), 262–316.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, J. (2017). Nonlinear large deviations: Beyond the hypercube. arXiv preprint arXiv:1703.08887.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chatterjee, S. (2017). Large Deviations for Sparse Graphs. In: Large Deviations for Random Graphs. Lecture Notes in Mathematics(), vol 2197. Springer, Cham. https://doi.org/10.1007/978-3-319-65816-2_8

Download citation

Publish with us

Policies and ethics