Skip to main content

Fast Spectral Methods for Temporally-Distributed Fractional PDEs

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Abstract

Temporally-distributed fractional partial differential equations appear as rigorous mathematical models that solve the probability density function of non-Markovian processes coding multi-physics diffusion-to-wave and multi-rate ultra slow-to-super diffusion dynamics (Chechkin et al, Phys Rev E 66(4):046129, 2002). We develop a Petrov-Galerkin spectral method for high dimensional temporally-distributed fractional partial differential equations with two-sided derivatives in a space-time hypercube. We employ Jacobi poly-fractonomials given in (Zayernouri and Karniadakis, J Comput Phys 252:495–517, 2013) and Legendre polynomials as the temporal and spatial basis/test functions, respectively. Moreover, we formulate a fast linear solver for the corresponding Lyapunov system. Furthermore, we perform the corresponding discrete stability and error analysis of the numerical scheme. Finally, we carry out several numerical test cases to examine the efficiency and accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Askey, J. Fitch, Integral representations for jacobi polynomials and some applications. J. Math. Anal. Appl. 26, 411–437 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  2. T.M. Atanackovic, S. Pilipovic, D. Zorica, Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2106), 1869–1891 (2009)

    Article  MATH  Google Scholar 

  3. D.A. Benson, R. Schumer, M.M. Meerschaert, S.W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests, in Dispersion in Heterogeneous Geological Formations (Springer, Netherlands, 2001), pp. 211–240

    Book  Google Scholar 

  4. D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  5. J. Cao, C. Li, Y. Chen, Compact difference method for solving the fractional reaction–subdiffusion equation with Neumann boundary value condition. Int. J. Comput. Math. 92(1), 167–180 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Chechkin, R. Gorenflo, I. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66(4), 046129 (2002)

    Google Scholar 

  7. M. Chen, W. Deng, A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model. 38(13), 3244–3259 (2014)

    Article  MathSciNet  Google Scholar 

  8. F. Chen, Q. Xu, J.S. Hesthaven, A multi-domain spectral method for time-fractional differential equations. J. Comput. Phys. 293, 157–172 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Chen, J. Shen, L.L. Wang, Generalized Jacobi functions and their applications to fractional differential equations. Mathematics of Math. Comput. 85(300), 1603–1638 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. D. del Castillo-Negrete, B. Carreras, V. Lynch, Fractional diffusion in plasma turbulence, Phys. Plasmas (1994-present) 11(8), 3854–3864 (2004)

    Google Scholar 

  11. A. Ern, J. Guermond, Theory and Practice of Finite Elements, vol. 159 (Springer Science & Business Media, New York, 2013)

    MATH  Google Scholar 

  12. H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation. Open Phys. 11(10), 1275–1283 (2013)

    Article  Google Scholar 

  13. B. Jin, R. Lazarov, J. Pasciak, Z. Zhou, Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35(2), 561–582 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. E. Kharazmi, M. Zayernouri, G.E. Karniadakis, Petrov-Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39(3), A1003–A1037 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  15. X. Li, C. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. X. Li, C. Xu, Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016 (2010)

    Google Scholar 

  17. C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. R.L. Magin, Fractional Calculus in Bioengineering (Begell House Redding, West Redding, 2006)

    Google Scholar 

  19. F. Mainardi, G. Pagnini, R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187(1), 295–305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Z. Mao, J. Shen, Efficient spectral–Galerkin methods for fractional partial differential equations with variable coefficients. J. Comput. Phys. 307, 243–261 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. W. McLean, K. Mustapha, Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52(1), 69–88 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. M.M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus, vol. 43 (Walter de Gruyter, Berlin, 2012)

    MATH  Google Scholar 

  23. M.M. Meerschaert, F. Sabzikar, M.S. Phanikumar, A. Zeleke, Tempered fractional time series model for turbulence in geophysical flows. J. Stat. Mech: Theory Exp. 2014(9), P09023 (2014)

    Google Scholar 

  24. M. Naghibolhosseini, Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear, Ph.D. thesis, City University of New York, NY, 2015

    Google Scholar 

  25. P. Perdikaris, G.E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models. Ann. Biomed. Eng. 42(5) 1012–1023 (2014)

    Article  Google Scholar 

  26. M. Samiee, M. Zayernouri, M.M. Meerschaert, A unified spectral method for FPDEs with two-sided derivatives; part I: a fast solver. J. Comput. Phys. (In Press)

    Google Scholar 

  27. T. Srokowski, Lévy flights in nonhomogeneous media: distributed-order fractional equation approach. Phys. Rev. E 78(3), 031135 (2008)

    Google Scholar 

  28. M. Zayernouri, W. Cao, Z. Zhang, G.E. Karniadakis, Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J. Sci. Comput. 36(6), B904–B929 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Zayernouri, G.E. Karniadakis, Fractional Sturm–Liouville eigen-problems: theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 293, 312–338 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Zayernouri, A. Matzavinos, Fractional Adams–Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system, J. Comput. Phys. 317, 1–14 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Zayernouri, M. Ainsworth, G.E. Karniadakis, A unified Petrov–Galerkin spectral method for fractional PDEs. Comput. Methods Appl. Mech. Eng. 283, 1545–1569 (2015)

    Article  MathSciNet  Google Scholar 

  33. M. Zayernouri, M. Ainsworth, G.E. Karniadakis, Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Comput. 37(4), A1777–A1800 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  34. L. Zhao, W. Deng, J.S. Hesthaven, Spectral methods for tempered fractional differential equations. arXiv:1603.06511 (arXiv preprint)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the AFOSR Young Investigator Program (YIP) award on: “Data-Infused Fractional PDE Modeling and Simulation of Anomalous Transport” (FA9550-17-1-0150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Zayernouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Samiee, M., Kharazmi, E., Zayernouri, M. (2017). Fast Spectral Methods for Temporally-Distributed Fractional PDEs. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_47

Download citation

Publish with us

Policies and ethics