Skip to main content

Filling the Gaps: Improving Sampling and Analysis of Disease Surveillance Data in Galápagos

  • Chapter
  • First Online:
Disease Ecology

Abstract

Emerging infectious diseases in wildlife are of conservation concern worldwide, including on the Galápagos Archipelago, where isolation, small population sizes, and naïve immune systems place the birds of Galápagos at potentially higher risk of devastating impacts of disease. Wildlife disease data from surveillance efforts, whether active or passive, are invaluable because they provide a baseline understanding of what diseases are present in a system, serve as an early warning sign of an ecosystem health issue, and provide managers with information about the efficacy of disease mitigation efforts. We have learned an enormous amount about diseases affecting Galápagos avifauna in the last 20 years or so, but gaps in our understanding exist because of the challenges posed by issues with imperfect detection of hosts, parasites and pathogens, and the diseases they cause as well as uncertainty about the size of the population of the target host. Nonetheless, sampling design and analytical approaches borrowed from population and community ecology offer a suite of tools to help fill the gaps in our knowledge about diseases in wildlife in Galápagos and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre AA, Lutz PL (2004) Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator? Ecohealth 1:275–283

    Google Scholar 

  • Anchundia D, Huyvaert KP, Anderson DJ (2014) Chronic lack of breeding by Galápagos Blue-footed Boobies and associated population decline. Avian Conserv Ecol 9(1):6

    Article  Google Scholar 

  • Conn PB, Cooch EG (2009) Multistate capture-recpature analysis under imperfect state observation: an application to disease models. J Appl Ecol 46:486–492

    Article  Google Scholar 

  • Cooch EG, Conn PB, Ellner SP, Dobson AP, Pollock KH (2012) Disease dynamics in wild populations: modeling and estimation: a review. J Ornith 152(Suppl 2):S485–S509

    Article  Google Scholar 

  • Conner MM, McCarty CW, Miller MW (2000) Detection of bias in harvest-based estimates of chronic wasting disease prevalence in mule deer. J Wildl Dis 36:691–699

    Article  CAS  PubMed  Google Scholar 

  • Deem SL, Merkel J, Ballweber L, Vargas FH, Cruz MB, Parker PG (2010) Exposure to Toxoplasma gondii in Galapagos Penguins (Spheniscus mendiculus) and Flightless Cormorants (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. J Wildl Dis 46:1005–1011

    Article  PubMed  Google Scholar 

  • Dubey JP (2009) Toxoplasmosis of animals and humans. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Eads DA, Biggins DE, Doherty PF Jr, Gage KL, Huyvaert KP, Long DH, Antolin MF (2013) Using occupancy models to investigate the prevalence of ectoparasitic vectors on hosts: an example with fleas on prairie dogs. Int J Parasit Parasit Wildl 2:246–256

    Article  Google Scholar 

  • Elmore SA, Huyvaert KP, Bailey LL, Milhous J, Alisauskas RT, Gajadhar AA, Jenkins EJ (2014) Toxoplasma gondii exposure in arctic-nesting geese: a multi-state occupancy framework and comparison of serological assays. Int J Parasit Parasit Wildl 3:147–153

    Article  Google Scholar 

  • Fallon SM, Ricklefs RE, Swanson BL, Bermingham E (2003) Detecting avian malaria: an improved polymerase chain reaction diagnostic. J Parasitol 89:1044–1047

    Article  CAS  PubMed  Google Scholar 

  • Fessl B, Sinclair BJ, Kleindorfer S (2006b) The life-cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin’s finches and its impacts on nestling survival. Parasitology 133:739–747

    Article  CAS  PubMed  Google Scholar 

  • Fessl B, Kleindorfer SM, Tebbich S (2006a) An experimental study on the effects of an introduced parasite in Darwin’s finches. Biol Conserv 127:55–61

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Gomez-Diaz E, Doherty PF Jr, Duneau D, McCoy KD (2010) Cryptic vector divergence masks vector-specific patterns of infection: an example from the marine cycle of Lyme borreliosis. Evol Appl 3:391–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottdenker NL, Walsh T, Jiménez-Uzcátegui G, Betancourt F, Cruz M, Soos C, Miller RE, Parker PG (2008) Causes of mortality of wild birds submitted to the Charles Darwin Research Station, Santa Cruz, Galápagos, Ecuador from 2002–2004. J Wildl Dis 44:1024–1031

    Article  PubMed  Google Scholar 

  • Huggins RM (1989) On the statistical analysis of capture experiments. Biometrika 76:133–140

    Article  Google Scholar 

  • Huggins RM (1991) Some practical aspects of a conditional likelihood approach to capture experiments. Biometrics 47:725–732

    Article  Google Scholar 

  • Jennelle CS, Cooch EG, Conroy MJ, Senar JC (2007) State-specific detection probabilities and disease prevalence. Ecol Appl 17:154–167

    Article  PubMed  Google Scholar 

  • Joseph MB, Mihaljevic JR, Arellano AL, Kueneman JG, Preston DL, Cross PC, Johnson PTJ (2013) Taming wildlife disease: bridging the gap between science and management. J Appl Ecol 50:702–712

    Article  Google Scholar 

  • Koop JAH, Kim PS, Knutie SA, Adler F, Clayton DH (2016) An introduced parasitic fly may lead to local extinction of Darwin’s finch populations. J Appl Ecol 53(2):511–518

    Article  PubMed  Google Scholar 

  • Lachish S, Bonsall MB, Lawson B, Cunningham AA, Sheldon BC (2012) Individual and population-level Impacts of an emerging poxvirus disease in a wild population of great tits. PLoS One 7(11):e48545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langwig KE, Voyles J, Wilber MQ, Frick WF, Murray KA, Bolker BM, Collins JP, Cheng TL, Fisher MC, Hoyt JR, Lindner DL, McCallum HI, Puschendorf R, Rosenblum EB, Toothman M,Willis CK, Briggs CJ, Kilpatrick AM (2015) Context-dependent conservation responses to emerging wildlife diseases. Front Ecol Environ 13:195–202

    Article  Google Scholar 

  • Levin II, Zwiers P, Deem SL, Geest EA, Higashiguchi JM, Iezhova TA, Jiménez-Uzcátegui G, Kim DH, Morton JP, Perlut NG, Renfrew RB, Sari EHR, Valkiunas G, Parker PG (2013) Multiple lineages of avian malaria parasites (Plasmodium) in the Galápagos Islands and evidence for arrival via migratory birds. Conserv Biol 27:1366–1377

    Article  CAS  PubMed  Google Scholar 

  • Levy JK, Crawford PC, Lappin MR, Dubovi EJ, Levy MG, Alleman R, Tucker SJ, Clifford EL (2008) Infectious Diseases of Dogs and Cats on Isbela Island, Galapagos. J Vet Intern Med 22:60–65

    Article  CAS  PubMed  Google Scholar 

  • Love AC, Foltz SL, Adleman JS, Moore IT, Hawley DM (2016) Changes in corticosterone concentrations and behavior during Mycoplasma gallisepticum infection in house finches (Haemorhous mexicanus). Gen Comp Endocrinol 235:70–77

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2006) Occupancy modeling and estimation: inferring patterns and dynamics of species occurrence. Academic Press, Amsterdam

    Google Scholar 

  • Maslo B, Valent M, Gumbs JF, Frick WF (2015) Conservation implications of ameliorating survival of little brown bats with white-nose syndrome. Ecol Appl 25:1832–1840

    Article  PubMed  Google Scholar 

  • McCallum H (2016) Models for managing wildlife disease. Parasitology 143:805–820

    Article  PubMed  Google Scholar 

  • McClintock BT, Nichols JD, Bailey LL, MacKenzie DI, Kendall WL, Franklin AB (2010) Seeking a second opinion: uncertainty in disease ecology. Ecol Lett 13:659–674

    Article  PubMed  Google Scholar 

  • Newman SH, Chmura A, Converse K, Kilpatrick AM, Patel N, Lammers E, Daszak P (2007) Aquatic bird disease and mortality as an indicator of changing ecosystem health. Mar Ecol Prog Ser 352:299–309

    Article  Google Scholar 

  • Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon FE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408

    Article  Google Scholar 

  • Padilla LR, Huyvaert KP, Merkel J, Miller RE, Parker PG (2003) Hematology, plasma chemistry, serology, and Chlamydophila status of the waved albatross (Phoebastria irrorata) on the Galapagos Islands. J Zoo Wildl Med 34:278–283

    Article  PubMed  Google Scholar 

  • Padilla LR, Whiteman NK, Merkel J, Huyvaert KP, Parker PG (2006) Health assessment of seabirds on Isla Genovesa, Galápagos Islands. Ornithol Monogr 60:86–97

    Article  Google Scholar 

  • Parker PG, Buckles EL, Farrington HL, Petren K, Whiteman NK, Ricklefs RE, Bollmer JL, Jimenez-Uzcategui G (2011) 110 years of Avipoxvirus on the Galapagos Islands. PLoS One 6(1):e15989. doi:10.1371/journal.pone.0015989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen AB, Babayan SA (2011) Wild immunology. Mol Ecol 20:872–880

    Article  CAS  PubMed  Google Scholar 

  • Restif O, Hayman DTS, Pulliam JRC, Plowright RK, George DB, Luis AD, Cunningham AA, Bowen RA, Fooks AR, O’Shea TJ, Wood JLN, Webb CT (2012) Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics. Ecol Lett 15:1083–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryser-Degiorgis MP (2013) Wildlife health investigations: needs, challenges and recommendations. BMC Vet Res 9:223

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt BR, Kéry M, Ursenbacher S, Hyman OJ, Collins JP (2013) Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol Evol 4:646–653

    Article  Google Scholar 

  • Toma B, Vaillancourt J-P, Dufour B, Eloit M, Moutou F, Marsh W, Bénet J-J, Sanaa M, Pascal M (eds) (1999) Dictionary of veterinary epidemiology. Iowa State University Press, Ames, IA

    Google Scholar 

  • Tompkins DM, Carver S, Jones ME, Krkošek M, Skeratt LF (2015) Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol 31:149–159

    Article  PubMed  Google Scholar 

  • Tompkins EM, Anderson DJ, Pabilonia KL, Huyvaert KP (2017) Avian Pox discovered in the critically endangered Waved Albatross (Phoebastria irrorata) from the Galápagos Islands, Ecuador. J Wildl Dis 53(4)

    Google Scholar 

  • Tripathy DN (1993) Avipox viruses. In: McFerran JB, McNulty MS (eds) Virus infections of vertebrates: virus infections of birds, vol 4. Elsevier Science Publishers, Amsterdam, pp 5–15

    Google Scholar 

  • Valkiunas G (2005) Avian malaria parasites and other Haemosporidia. CRC Press, Boca Raton, FL

    Google Scholar 

  • van Riper C III, van Riper SG, Goff ML, Laird M (1986) The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr 56:327–344

    Article  Google Scholar 

  • Walton L, Marion G, Davidson RS, White PCL, Smith LA, Gavier-Widen D, Yon L, Hannant D, Hutchings MR (2016) The ecology of wildlife disease surveillance: demographic and prevalence fluctuations undermine surveillance. J Appl Ecol 53:1460–1469

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:S120–S139

    Article  Google Scholar 

  • Wikelski M, Foufopoulos J, Vargas H, Snell H (2004) Galápagos birds and diseases: invasive pathogens as threats for island species. Ecol Soc 9(1):5

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn P. Huyvaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huyvaert, K.P. (2018). Filling the Gaps: Improving Sampling and Analysis of Disease Surveillance Data in Galápagos. In: Parker, P. (eds) Disease Ecology. Social and Ecological Interactions in the Galapagos Islands. Springer, Cham. https://doi.org/10.1007/978-3-319-65909-1_11

Download citation

Publish with us

Policies and ethics