Skip to main content

cGMP Signaling in Platelets

  • Chapter
  • First Online:
Platelets, Haemostasis and Inflammation

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 5))

Abstract

The cyclic nucleotide cGMP is a key intracellular signaling molecule in mammals. It mediates many effects of nitric oxide (NO) including the regulation of vascular tone and platelet activity. Pharmacological and genetic studies have indicated that the NO-cGMP pathway could be an attractive target for antithrombotic drugs. Here, we summarize the biochemistry and (patho-)physiology of cGMP signaling in platelets. These cells generate and degrade cGMP by the NO-activated soluble guanylate cyclase and several phosphodiesterases (PDE2, PDE3, and PDE5), respectively. An increase of the cGMP concentration activates cGMP-dependent protein kinase type I (cGKI), which phosphorylates several platelet proteins. Among the cGKI substrates are small G-proteins (e.g., Rap1B), regulators of G-protein signaling (e.g., RGS18) and intracellular Ca2+ release (e.g., IRAG), and actin-binding proteins (e.g., VASP). According to the prevalent view, cGKI-dependent substrate phosphorylation limits platelet activation and thrombus formation through the inhibition of intracellular Ca2+ release, integrin activation, cytoskeletal remodeling, and granule secretion. Interestingly, several studies suggest that cGMP also promotes specific aspects of platelet activation. We discuss these seemingly contradictory findings and propose a new model of cGMP-regulated hemostasis that leads to optimal platelet activation in response to vascular injury. This model integrates both platelet stimulation and inhibition by dynamic shear stress-regulated cGMP signals that are generated during different phases of thrombus formation under flow in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest. 2005;115:3378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.

    Article  CAS  PubMed  Google Scholar 

  3. Ruggeri ZM. Platelet adhesion under flow. Microcirculation. 2009;16:58–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jackson SP. Arterial thrombosis—insidious, unpredictable and deadly. Nat Med. 2011;17:1423–36.

    Article  CAS  PubMed  Google Scholar 

  5. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ashman DF, Lipton R, Melicow MM, Price TD. Isolation of adenosine 3′, 5′-monophosphate and guanosine 3′, 5′-monophosphate from rat urine. Biochem Biophys Res Commun. 1963;11:330–4.

    Article  CAS  PubMed  Google Scholar 

  7. Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res. 2003;93:96–105.

    Article  CAS  PubMed  Google Scholar 

  8. Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533–59.

    Article  CAS  PubMed  Google Scholar 

  9. Kuhn M. Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol. 2009;191:47–69.

    Article  CAS  Google Scholar 

  10. Potter LR. Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Ther. 2011;130:71–82.

    Article  CAS  PubMed  Google Scholar 

  11. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res. 2006;99:816–28.

    Article  CAS  PubMed  Google Scholar 

  12. Kemp-Harper B, Feil R. Meeting report: cGMP matters. Sci Signal. 2008;1:pe12.

    Article  PubMed  Google Scholar 

  13. Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91:651–90.

    Article  CAS  PubMed  Google Scholar 

  14. Cheepala S, Hulot JS, Morgan JA, Sassi Y, Zhang W, Naren AP, Schuetz JD. Cyclic nucleotide compartmentalization: contributions of phosphodiesterases and ATP-binding cassette transporters. Annu Rev Pharmacol Toxicol. 2013;53:231–53.

    Article  CAS  PubMed  Google Scholar 

  15. Biel M, Zong X, Ludwig A, Sautter A, Hofmann F. Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol. 1999;135:151–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hofmann F. The biology of cyclic GMP-dependent protein kinases. J Biol Chem. 2005;280:1–4.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt H, Rathjen FG. Signalling mechanisms regulating axonal branching in vivo. Bioessays. 2010;32:977–85.

    Article  CAS  PubMed  Google Scholar 

  18. Gerzer R, Hofmann F, Bohme E, Ivanova K, Spies C, Schultz G. Purification of soluble guanylate cyclase without loss of stimulation by sodium nitroprusside. Adv Cyclic Nucleotide Res. 1981;14:255–61.

    CAS  PubMed  Google Scholar 

  19. Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F. Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem. 1986;261:7236–41.

    Article  CAS  PubMed  Google Scholar 

  20. Yuen PS, Potter LR, Garbers DL. A new form of guanylyl cyclase is preferentially expressed in rat kidney. Biochemistry. 1990;29:10872–8.

    Article  CAS  PubMed  Google Scholar 

  21. Harteneck C, Wedel B, Koesling D, Malkewitz J, Bohme E, Schultz G. Molecular cloning and expression of a new alpha-subunit of soluble guanylyl cyclase. Interchangeability of the alpha-subunits of the enzyme. FEBS Lett. 1991;292:217–22.

    Article  CAS  PubMed  Google Scholar 

  22. Russwurm M, Behrends S, Harteneck C, Koesling D. Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J. 1998;335(Pt 1):125–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Budworth J, Meillerais S, Charles I, Powell K. Tissue distribution of the human soluble guanylate cyclases. Biochem Biophys Res Commun. 1999;263:696–701.

    Article  CAS  PubMed  Google Scholar 

  24. Mergia E, Russwurm M, Zoidl G, Koesling D. Major occurrence of the new alpha2beta1 isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal. 2003;15:189–95.

    Article  CAS  PubMed  Google Scholar 

  25. Gerzer R, Bohme E, Hofmann F, Schultz G. Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett. 1981;132:71–4.

    Article  CAS  PubMed  Google Scholar 

  26. Humbert P, Niroomand F, Fischer G, Mayer B, Koesling D, Hinsch KD, Gausepohl H, Frank R, et al. Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur J Biochem. 1990;190:273–8.

    Article  CAS  PubMed  Google Scholar 

  27. Schrammel A, Behrends S, Schmidt K, Koesling D, Mayer B. Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol Pharmacol. 1996;50:1–5.

    CAS  PubMed  Google Scholar 

  28. Zhao Y, Brandish PE, Di Valentin M, Schelvis JP, Babcock GT, Marletta MA. Inhibition of soluble guanylate cyclase by ODQ. Biochemistry. 2000;39:10848–54.

    Article  CAS  PubMed  Google Scholar 

  29. Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D. Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest. 2006;116:1731–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Friebe A, Mergia E, Dangel O, Lange A, Koesling D. Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci USA. 2007;104:7699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dangel O, Mergia E, Karlisch K, Groneberg D, Koesling D, Friebe A. Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. J Thromb Haemost. 2010;8:1343–52.

    Article  CAS  PubMed  Google Scholar 

  32. Thoonen R, Cauwels A, Decaluwe K, Geschka S, Tainsh RE, Delanghe J, Hochepied T, De Cauwer L, et al. Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice. Nat Commun. 2015;6:8482.

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Xi X, Gu M, Feil R, Ye RD, Eigenthaler M, Hofmann F, Du X. A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell. 2003;112:77–86.

    Article  CAS  PubMed  Google Scholar 

  34. Gambaryan S, Kobsar A, Hartmann S, Birschmann I, Kuhlencordt PJ, Muller-Esterl W, Lohmann SM, Walter U. NO-synthase-/NO-independent regulation of human and murine platelet soluble guanylyl cyclase activity. J Thromb Haemost. 2008;6:1376–84.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang G, Xiang B, Dong A, Skoda RC, Daugherty A, Smyth SS, Du X, Li Z. Biphasic roles for soluble guanylyl cyclase (sGC) in platelet activation. Blood. 2011;118:3670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanafy KA, Martin E, Murad F. CCTeta, a novel soluble guanylyl cyclase-interacting protein. J Biol Chem. 2004;279:46946–53.

    Article  CAS  PubMed  Google Scholar 

  37. Balashova N, Chang FJ, Lamothe M, Sun Q, Beuve A. Characterization of a novel type of endogenous activator of soluble guanylyl cyclase. J Biol Chem. 2005;280:2186–96.

    Article  CAS  PubMed  Google Scholar 

  38. Russwurm M, Wittau N, Koesling D. Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes. J Biol Chem. 2001;276:44647–52.

    Article  CAS  PubMed  Google Scholar 

  39. Chauhan S, Jelen F, Sharina I, Martin E. The G-protein regulator LGN modulates the activity of the NO receptor soluble guanylate cyclase. Biochem J. 2012;446:445–53.

    Article  CAS  PubMed  Google Scholar 

  40. Heckler EJ, Crassous PA, Baskaran P, Beuve A. Protein disulfide-isomerase interacts with soluble guanylyl cyclase via a redox-based mechanism and modulates its activity. Biochem J. 2013;452:161–9.

    Article  CAS  PubMed  Google Scholar 

  41. Haslam RJ, Dickinson NT, Jang EK. Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemost. 1999;82:412–23.

    Article  CAS  PubMed  Google Scholar 

  42. Rondina MT, Weyrich AS. Targeting phosphodiesterases in anti-platelet therapy. Handb Exp Pharmacol. 2012;210:225–38.

    Article  CAS  Google Scholar 

  43. Mullershausen F, Russwurm M, Thompson WJ, Liu L, Koesling D, Friebe A. Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. J Cell Biol. 2001;155:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J. 2003;22:469–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D. Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol. 2003;160:719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sager G. Cyclic GMP transporters. Neurochem Int. 2004;45:865–73.

    Article  CAS  PubMed  Google Scholar 

  47. Krawutschke C, Koesling D, Russwurm M. Cyclic GMP in vascular relaxation: export is of similar Importance as degradation. Arterioscler Thromb Vasc Biol. 2015;35:2011–9.

    Article  CAS  PubMed  Google Scholar 

  48. Wu XB, Brune B, Von Appen F, Ullrich V. Efflux of cyclic GMP from activated human platelets. Mol Pharmacol. 1993;43:564–8.

    CAS  PubMed  Google Scholar 

  49. Rius M, Hummel-Eisenbeiss J, Keppler D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J Pharmacol Exp Ther. 2008;324:86–94.

    Article  CAS  PubMed  Google Scholar 

  50. Jedlitschky G, Tirschmann K, Lubenow LE, Nieuwenhuis HK, Akkerman JW, Greinacher A, Kroemer HK. The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood. 2004;104:3603–10.

    Article  CAS  PubMed  Google Scholar 

  51. Borgognone A, Pulcinelli FM. Reduction of cAMP and cGMP inhibitory effects in human platelets by MRP4-mediated transport. Thromb Haemost. 2012;108:955–62.

    Article  CAS  PubMed  Google Scholar 

  52. Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev. 2006;86:1–23.

    Article  CAS  PubMed  Google Scholar 

  53. Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 2010;62:525–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Geiselhoringer A, Gaisa M, Hofmann F, Schlossmann J. Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett. 2004;575:19–22.

    Article  CAS  PubMed  Google Scholar 

  55. Antl M, von Bruhl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, et al. IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood. 2007;109:552–9.

    Article  CAS  PubMed  Google Scholar 

  56. Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fassler R, Ruth P, et al. Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med. 1999;189:1255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Massberg S, Gruner S, Konrad I, Garcia Arguinzonis MI, Eigenthaler M, Hemler K, Kersting J, Schulz C, et al. Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice. Blood. 2004;103:136–42.

    Article  CAS  PubMed  Google Scholar 

  58. Bergmeier W, Stefanini L. Novel molecules in calcium signaling in platelets. J Thromb Haemost. 2009;7(Suppl 1):187–90.

    Article  CAS  PubMed  Google Scholar 

  59. Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010;30:2341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, et al. Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J. 1998;17:3045–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feil R, Gappa N, Rutz M, Schlossmann J, Rose CR, Konnerth A, Brummer S, Kuhbandner S, et al. Functional reconstitution of vascular smooth muscle cells with cGMP-dependent protein kinase I isoforms. Circ Res. 2002;90:1080–6.

    Article  CAS  PubMed  Google Scholar 

  62. Muller PM, Gnugge R, Dhayade S, Thunemann M, Krippeit-Drews P, Drews G, Feil R. H(2)O(2) lowers the cytosolic Ca(2)(+) concentration via activation of cGMP-dependent protein kinase Ialpha. Free Radic Biol Med. 2012;53:1574–83.

    Article  PubMed  CAS  Google Scholar 

  63. Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature. 2000;404:197–201.

    Article  CAS  PubMed  Google Scholar 

  64. Geiselhoringer A, Werner M, Sigl K, Smital P, Worner R, Acheo L, Stieber J, Weinmeister P, et al. IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J. 2004;23:4222–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Halbrugge M, Friedrich C, Eigenthaler M, Schanzenbacher P, Walter U. Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators. J Biol Chem. 1990;265:3088–93.

    Article  CAS  PubMed  Google Scholar 

  66. Benz PM, Blume C, Moebius J, Oschatz C, Schuh K, Sickmann A, Walter U, Feller SM, et al. Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol. 2008;180:205–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsiek K, Walter U. Phosphorylation of focal adhesion vasodilator-stimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem. 1994;225:21–7.

    Article  CAS  PubMed  Google Scholar 

  68. Aszodi A, Pfeifer A, Ahmad M, Glauner M, Zhou XH, Ny L, Andersson KE, Kehrel B, et al. The vasodilator-stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function. EMBO J. 1999;18:37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reinhard M, Jarchau T, Walter U. Actin-based motility: stop and go with Ena/VASP proteins. Trends Biochem Sci. 2001;26:243–9.

    Article  CAS  PubMed  Google Scholar 

  70. Walter U, Gambaryan S. cGMP and cGMP-dependent protein kinase in platelets and blood cells. Handb Exp Pharmacol. 2009;191:533–48.

    Article  CAS  Google Scholar 

  71. Smolenski A. Novel roles of cAMP/cGMP-dependent signaling in platelets. J Thromb Haemost. 2012;10:167–76.

    Article  CAS  PubMed  Google Scholar 

  72. Chrzanowska-Wodnicka M, Smyth SS, Schoenwaelder SM, Fischer TH, White GC 2nd. Rap1b is required for normal platelet function and hemostasis in mice. J Clin Invest. 2005;115:680–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Danielewski O, Schultess J, Smolenski A. The NO/cGMP pathway inhibits Rap 1 activation in human platelets via cGMP-dependent protein kinase I. Thromb Haemost. 2005;93:319–25.

    Article  CAS  PubMed  Google Scholar 

  74. Hoffmeister M, Riha P, Neumuller O, Danielewski O, Schultess J, Smolenski AP. Cyclic nucleotide-dependent protein kinases inhibit binding of 14-3-3 to the GTPase-activating protein Rap1GAP2 in platelets. J Biol Chem. 2008;283:2297–306.

    Article  CAS  PubMed  Google Scholar 

  75. Gegenbauer K, Elia G, Blanco-Fernandez A, Smolenski A. Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood. 2012;119:3799–807.

    Article  CAS  PubMed  Google Scholar 

  76. Nagy Z, Wynne K, von Kriegsheim A, Gambaryan S, Smolenski A. Cyclic nucleotide-dependent protein kinases target ARHGAP17 and ARHGEF6 complexes in platelets. J Biol Chem. 2015;290:29974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Aslan JE, McCarty OJ. Rho GTPases in platelet function. J Thromb Haemost. 2013;11:35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides. Biochem Pharmacol. 2001;62:1153–61.

    Article  CAS  PubMed  Google Scholar 

  79. Zaccolo M, Movsesian MA. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res. 2007;100:1569–78.

    Article  CAS  PubMed  Google Scholar 

  80. Li Z, Ajdic J, Eigenthaler M, Du X. A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans. Blood. 2003;101:4423–9.

    Article  CAS  PubMed  Google Scholar 

  81. Jensen BO, Selheim F, Doskeland SO, Gear AR, Holmsen H. Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide. Blood. 2004;104:2775–82.

    Article  CAS  PubMed  Google Scholar 

  82. Wilson LS, Elbatarny HS, Crawley SW, Bennett BM, Maurice DH. Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proc Natl Acad Sci USA. 2008;105:13650–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Momi S, Caracchini R, Falcinelli E, Evangelista S, Gresele P. Stimulation of platelet nitric oxide production by nebivolol prevents thrombosis. Arterioscler Thromb Vasc Biol. 2014;34:820–9.

    Article  CAS  PubMed  Google Scholar 

  84. Kirkby NS, Lundberg MH, Chan MV, Vojnovic I, Solomon AB, Emerson M, Mitchell JA, Warner TD. Blockade of the purinergic P2Y12 receptor greatly increases the platelet inhibitory actions of nitric oxide. Proc Natl Acad Sci USA. 2013;110:15782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Magwenzi S, Woodward C, Wraith KS, Aburima A, Raslan Z, Jones H, McNeil C, Wheatcroft S, et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 2015;125:2693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15:665–73.

    Article  CAS  PubMed  Google Scholar 

  87. Gambaryan S, Geiger J, Schwarz UR, Butt E, Begonja A, Obergfell A, Walter U. Potent inhibition of human platelets by cGMP analogs independent of cGMP-dependent protein kinase. Blood. 2004;103:2593–600.

    Article  CAS  PubMed  Google Scholar 

  88. Marshall SJ, Senis YA, Auger JM, Feil R, Hofmann F, Salmon G, Peterson JT, Burslem F, et al. GPIb-dependent platelet activation is dependent on Src kinases but not MAP kinase or cGMP-dependent kinase. Blood. 2004;103:2601–9.

    Article  CAS  PubMed  Google Scholar 

  89. Valtcheva N, Nestorov P, Beck A, Russwurm M, Hillenbrand M, Weinmeister P, Feil R. The commonly used cGMP-dependent protein kinase type I (cGKI) inhibitor Rp-8-Br-PET-cGMPS can activate cGKI in vitro and in intact cells. J Biol Chem. 2009;284:556–62.

    Article  CAS  PubMed  Google Scholar 

  90. Wanstall JC, Homer KL, Doggrell SA. Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol. 2005;3:41–53.

    Article  CAS  PubMed  Google Scholar 

  91. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 2012;287:4411–8.

    Article  CAS  PubMed  Google Scholar 

  92. Gambaryan S, Tsikas D. A review and discussion of platelet nitric oxide and nitric oxide synthase: do blood platelets produce nitric oxide from L-arginine or nitrite? Amino Acids. 2015;47:1779–93.

    Article  CAS  PubMed  Google Scholar 

  93. Lutz SZ, Hennige AM, Feil S, Peter A, Gerling A, Machann J, Krober SM, Rath M, et al. Genetic ablation of cGMP-dependent protein kinase type I causes liver inflammation and fasting hyperglycemia. Diabetes. 2011;60:1566–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang L, Lukowski R, Gaertner F, Lorenz M, Legate KR, Domes K, Angermeier E, Hofmann F, et al. Thrombocytosis as a response to high interleukin-6 levels in cGMP-dependent protein kinase I mutant mice. Arterioscler Thromb Vasc Biol. 2013;33:1820–8.

    Article  CAS  PubMed  Google Scholar 

  95. Du X, Marjanovic JA, Li Z. On the roles of cGMP and glycoprotein Ib in platelet activation. Blood. 2004;103:4371–2. author reply 4372-3.

    Article  CAS  PubMed  Google Scholar 

  96. Walter U, Gambaryan S. Roles of cGMP/cGMP-dependent protein kinase in platelet activation. Blood. 2004;104:2609.

    Article  CAS  PubMed  Google Scholar 

  97. Gambaryan S, Friebe A, Walter U. Does the NO/sGC/cGMP/PKG pathway play a stimulatory role in platelets? Blood. 2012;119:5335–6. author reply 5336-7.

    Article  CAS  PubMed  Google Scholar 

  98. Li Z, Du X. Response: yes, cGMP plays a stimulatory role in platelet activation. Blood. 2012;119:5336–7.

    Article  CAS  Google Scholar 

  99. Riba R, Sharifi M, Farndale RW, Naseem KM. Regulation of platelet guanylyl cyclase by collagen: evidence that glycoprotein VI mediates platelet nitric oxide synthesis in response to collagen. Thromb Haemost. 2005;94:395–403.

    CAS  PubMed  Google Scholar 

  100. Riba R, Oberprieler NG, Roberts W, Naseem KM. Von Willebrand factor activates endothelial nitric oxide synthase in blood platelets by a glycoprotein Ib-dependent mechanism. J Thromb Haemost. 2006;4:2636–44.

    Article  CAS  PubMed  Google Scholar 

  101. Cozzi MR, Guglielmini G, Battiston M, Momi S, Lombardi E, Miller EC, De Zanet D, Mazzucato M, et al. Visualization of nitric oxide production by individual platelets during adhesion in flowing blood. Blood. 2015;125:697–705.

    Article  CAS  PubMed  Google Scholar 

  102. Li Z, Zhang G, Feil R, Han J, Du X. Sequential activation of p38 and ERK pathways by cGMP-dependent protein kinase leading to activation of the platelet integrin alphaIIb beta3. Blood. 2006;107:965–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Begonja AJ, Geiger J, Rukoyatkina N, Rauchfuss S, Gambaryan S, Walter U. Thrombin stimulation of p38 MAP kinase in human platelets is mediated by ADP and thromboxane A2 and inhibited by cGMP/cGMP-dependent protein kinase. Blood. 2007;109:616–8.

    Article  CAS  PubMed  Google Scholar 

  104. Jackson EC, McNicol A. Cyclic nucleotides inhibit MAP kinase activity in low-dose collagen-stimulated platelets. Thromb Res. 2010;125:147–51.

    Article  CAS  PubMed  Google Scholar 

  105. Thaiss CA, Levy M, Itav S, Elinav E. Integration of innate immune signaling. Trends Immunol. 2016. https://doi.org/10.1016/j.it.2015.12.003.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009;182:7997–8004.

    Article  CAS  PubMed  Google Scholar 

  107. Vogel S, Bodenstein R, Chen Q, Feil S, Feil R, Rheinlaender J, Schaffer TE, Bohn E, et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125:4638–54.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Zhang S, Zhang S, Hu L, Zhai L, Xue R, Ye J, Chen L, Cheng G, et al. Nucleotide-binding oligomerization domain 2 receptor is expressed in platelets and enhances platelet activation and thrombosis. Circulation. 2015;131:1160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Erdmann J, Stark K, Esslinger UB, Rumpf PM, Koesling D, de Wit C, Kaiser FJ, Braunholz D, et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature. 2013;504:432–6.

    Article  CAS  PubMed  Google Scholar 

  110. Herve D, Philippi A, Belbouab R, Zerah M, Chabrier S, Collardeau-Frachon S, Bergametti F, Essongue A, et al. Loss of alpha1beta1 soluble guanylate cyclase, the major nitric oxide receptor, leads to moyamoya and achalasia. Am J Hum Genet. 2014;94:385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lu X, Wang L, Chen S, He L, Yang X, Shi Y, Cheng J, Zhang L, et al. Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet. 2012;44:890–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33.

    Article  CAS  PubMed  Google Scholar 

  113. Goto S, Ikeda Y, Saldivar E, Ruggeri ZM. Distinct mechanisms of platelet aggregation as a consequence of different shearing flow conditions. J Clin Invest. 1998;101:479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jackson SP. The growing complexity of platelet aggregation. Blood. 2007;109:5087–95.

    Article  CAS  PubMed  Google Scholar 

  115. Kroll MH, Hellums JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood. 1996;88:1525–41.

    Article  CAS  PubMed  Google Scholar 

  116. Sakariassen KS. Thrombus formation on apex of arterial stenoses: the need for a fluid high shear stenosis diagnostic device. Future Cardiol. 2007;3:193–201.

    Article  PubMed  Google Scholar 

  117. Corson MA, James NL, Latta SE, Nerem RM, Berk BC, Harrison DG. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res. 1996;79:984–91.

    Article  CAS  PubMed  Google Scholar 

  118. Lamontagne D, Pohl U, Busse R. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res. 1992;70:123–30.

    Article  CAS  PubMed  Google Scholar 

  119. Blackmore PF. Biphasic effects of nitric oxide on calcium influx in human platelets. Thromb Res. 2011;127:e8–14.

    Article  CAS  PubMed  Google Scholar 

  120. Nikolaev VO, Lohse MJ. Novel techniques for real-time monitoring of cGMP in living cells. Handb Exp Pharmacol. 2009;191:229–43.

    Article  CAS  Google Scholar 

  121. Thunemann M, Fomin N, Krawutschke C, Russwurm M, Feil R. Visualization of cGMP with cGi biosensors. Methods Mol Biol. 2013;1020:89–120.

    Article  CAS  PubMed  Google Scholar 

  122. Thunemann M, Wen L, Hillenbrand M, Vachaviolos A, Feil S, Ott T, Han X, Fukumura D, et al. Transgenic mice for cGMP imaging. Circ Res. 2013;113:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thunemann M, Schmidt K, de Wit C, Han X, Jain RK, Fukumura D, Feil R. Correlative intravital imaging of cGMP signals and vasodilation in mice. Front Physiol. 2014;5:394.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Brass LF, Ma P. Applying the brakes to platelet activation. Blood. 2012;119:3651–2.

    Article  CAS  PubMed  Google Scholar 

  125. Stasch JP, Pacher P, Evgenov OV. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation. 2011;123:2263–73.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michael Paolillo for reading the manuscript as well as the current and past members of the Feil laboratory for critical discussions. We apologize to all our colleagues, whose work could not be cited due to space limitations. The work in the authors’ laboratory is supported by the Fund for Science and Deutsche Forschungsgemeinschaft (FE 438/2-4, FOR 2060 projects FE 438/5-1 and FE 438/6-1, KFO 274 projects FE 438/7-1 and FE 438/8-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Feil .

Editor information

Editors and Affiliations

Compliance with Ethical Standards

Compliance with Ethical Standards

  • Conflict of Interest: Lai Wen, Susanne Feil, and Robert Feil declare that they have no conflict of interest.

  • Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wen, L., Feil, S., Feil, R. (2017). cGMP Signaling in Platelets. In: Zirlik, A., Bode, C., Gawaz, M. (eds) Platelets, Haemostasis and Inflammation. Cardiac and Vascular Biology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-66224-4_15

Download citation

Publish with us

Policies and ethics