Skip to main content

Elucidation of Emerging Nanomaterials Impacts on Antibiotic Resistance Against Soil and Aquatic Microflora

  • Chapter
  • First Online:
Antibiotics and Antibiotics Resistance Genes in Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

  • 1897 Accesses

Abstract

Antibiotic resistance is becoming a big challenge in almost all the fields especially against soil microflora. With the advent and spread of emerging metallic nanomaterials (MNPs), it is important to elucidate the optimistic and adverse impacts on plants and soil microflora along with the positive use of antibiotics. It is well known that green synthesis of nanomaterials has antimicrobial properties and cytotoxic to the harmful bacteria and enhances the properties of antibiotics, but applications of nanomaterials in the soil environment is a big interrogation due to their inhibitory effects on plant’s growth enzymes and plant’s beneficial bacteria. Impacts of nanomaterials in combination with antibiotics and their role on plant growth-promoting bacteria have been discussed in this chapter. Further, the use of nanomaterials in soil, their role in sorption by plants, their access to food web, and impacts on human health are critically discussed. Finally, some more studies regarding a missing gap for the use of MNPs against plant’s beneficial bacteria are recommended.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-66260-2_22.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agtuca BJ (2014) Gold nanoparticles in the environment: studying the genetic toxicity and bioavailability in soils and hydroponic exposures with Lycopersicon esculentum (tomato ‘brandywine’). Honors theses, Paper 37

    Google Scholar 

  • Ahmed T, Imdad S, Ashraf S, Butt NM (2012) Effect of size and surface ligands of silver (ag) nanoparticles on waterborne bacteria. Int J Theor Appl Nanotechnol 1(1):111–116. doi:10.11159/ijtan.2012.017

    CAS  Google Scholar 

  • Ahmed T, Yaldram K, Imdad S, Butt NM (2014) Emerging nanotechnology based methods for water purification—a review. Desalin Water Treat 52:4089–4101

    Article  CAS  Google Scholar 

  • Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M (2011) Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti-Infect Ther 9(11):1035–1052

    Article  CAS  PubMed  Google Scholar 

  • Arnaout CL (2012) Assessing the impacts of silver nanoparticles on the growth, diversity, and function of wastewater bacteria. Ph.D. thesis, Department of Civil and Environmental Engineering, Duke University

    Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal 1–28. doi:10.1155/2014/641759, 2014

  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A (2012) Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int J Nanomedicine 7:6003–6009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhosale RS, Hajare KY, Mulay B, Mujumdar S, Kothawade M (2015) Biosynthesis, characterization and study of antimicrobial effect of silver nanoparticles by Actinomycetes spp. Int J Curr Microbiol Appl Sci 2:144–151

    Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma Glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    Article  CAS  PubMed  Google Scholar 

  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol 78(8):2768–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgos JM, Ellinggton BA, Varela MF (2005) Presence of multidrug resistant enteric bacteria in dairy farm topsoil. J Dairy Sci 88(4):1391–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173

    Article  CAS  Google Scholar 

  • Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buszewski B, Railean-Plugaru V, Pomastowski P, Rafinska K, Szultka-Mlynska M, Wypij M, Laskowski D, Dahm H (2016) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2016.03.002

  • Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Burgmann H, Sorum H (2013) A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 4:96. doi:10.3389/fmicb.2013.00096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai H, Yao J, Sun J, Zhang C, Liu W, Zhu M, Ceccanti B (2015) The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil. Bull Environ Contam Toxicol 94:490. doi:10.1007/s00128-015-1485-9

    Article  CAS  PubMed  Google Scholar 

  • Chandan P, Mishra RP, Asif A, Gangwar VS, Shweta C (2013) Isolation and characterization of multi drug resistant super pathogens from soil samples collected from hospitals. Res J Recent Sci 2:124–129

    Google Scholar 

  • Chauhan R, Kumar A, Abraham J (2013) A biological approach to the synthesis of silver nanoparticles with Streptomyces sp JAR1 and its antimicrobial activity. Sci Pharm 81:607–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li S, Luo J, Wang R, Ding W (2016) Enhancement of the antibacterial activity of silver nanoparticles against phytopathogenic bacterium Ralstonia solanacearum by stabilization. J Nanomater 2016:1. doi:10.1155/2016/7135852

    Google Scholar 

  • Chichiricco G, Poma A (2014) Penetration and toxicity of nanomaterials in higher plants. Nano 5:851–873. doi:10.3390/nano5020851

    Google Scholar 

  • Chung H, Son Y, Yoon TK, Kim S, Kim W (2011) The effect of multi-walled carbon nanotubes on soil microbial activity. Ecotoxicol Environ Saf 74:569

    Article  CAS  PubMed  Google Scholar 

  • Concha-Guerrero SI, Brito ES, Piñón-Castillo HA, Tarango-Rivero SH, Caretta CA, Luna-Velasco A, Duran R, Orrantia-Borunda E (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1. doi:10.1155/2014/148743

    Article  CAS  Google Scholar 

  • Dar MA, Ingle A, Rai M (2013) Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomedicine 9(1):105–110

    Article  CAS  PubMed  Google Scholar 

  • De D, Mandal SM, Gauri SS, Bhattacharya R, Ram S, Roy SK (2010) Antibacterial effect of lanthanum calcium manganate (La0.67Ca0.33MnO3) nanoparticles against Pseudomonas aeruginosa ATCC 27853. J Biomed Nanotechnol 6(2):138–144

    Article  CAS  PubMed  Google Scholar 

  • Devi LS, Joshi SR (2012) Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya. Mycobiology 40(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhas SP, Mukherjee A, Chandrasekar N (2013) Synergistic effect of biogenic silver nanocolloid in combination with antibiotics: a potent therapeutic agent. Int J Pharm Pharm Sci 5(1):292–295

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–129

    Article  CAS  PubMed  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nano-particles in the soil and their potential implications to microbial activity. Geoderma 173:19

    Article  CAS  Google Scholar 

  • Ding C, Pan J, Jin M, Yang D, Shen Z, Wang J, Zhang B, Liu W, Fu J, Guo X, Wang D, Chen Z, Yin J, Qiu Z, Li J (2016) Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina. Nanotoxicology 10(8):1051–1060. doi:10.3109/17435390.2016.1161856

    Article  CAS  PubMed  Google Scholar 

  • Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:8220–8828

    Article  CAS  Google Scholar 

  • Esibu N, Armenta L, Ike J (2002) Antibiotic resistance in soil and water environments. Int J Environ Health Res 12(2):133–144

    Article  Google Scholar 

  • EU (2016) Science for environmental policy: nanoparticles’ ecological risks: effects on soil microorganisms. 463: European Commission DG, Environment News Alert Service, edited by SCU, The University of the West of England, Bristol

    Google Scholar 

  • Fatimah I (2016) Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J Adv Res 7(6):961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    Article  CAS  PubMed  Google Scholar 

  • Flores D, Chacon R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for Blackberry (rubus adenotrichos) in vitro plant rooting Growth and Histology. Am J Plant Sci 5:3510–3518. https://doi.org/10.4236/ajps.2014.524367

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8(12):84441

    Article  CAS  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9. doi:10.1186/1754-1611-3-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge YG, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, LaPara TM (2007) The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J 1:191–203. doi:10.1038/ismej.2007.31

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Rathod D, Tikar S, Dahm H, Rai M (2016) Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. J Basic Microbiol 56(5):541–556

    Article  CAS  PubMed  Google Scholar 

  • Gopinath PM, Narchonai G, Ranjani DD, Thanjuddin N (2015) Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharm Sci 10:138–145

    Article  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, Aberasturi DJ, Larramendi IRD, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends 30(10):499–511

    CAS  Google Scholar 

  • Harris PJ, Woodbine M (1967) Antibiotic resistance of bacteria from rhizosphere and non-rhizosphere soils. Plant Soil 27:167–171. doi:10.1007/BF01373387

    Article  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediment 11:1408–1417

    Article  CAS  Google Scholar 

  • Heuer H, Smalla K (2007) Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666. doi:10.1111/j.1462-2920.2006.01185

    Article  CAS  PubMed  Google Scholar 

  • Hollowell AC, Gano KA, Lopez G, Shahin K, Regus JU, Gleason N, Graeter S, Pahua V, Sachs JL (2015) Native California soils are selective reservoirs for multidrug-resistant bacteria. Environ Microbiol Rep 3:442–449

    Article  Google Scholar 

  • Hsueh Y, Ke W, Hsieh C, Lin K, Tzou D, Chiang C (2015) ZnO nanoparticles affect Bacillus subtilis cell growth and biofilm formation. PLoS One 10(6):e0128457. http://dukespace.lib.duke.edu/dspace/bitstream/handle/10161/5852/Arnaout_duke_0066D_11593.pdf. Last accessed 28 Dec 2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibekwe AM, Grieve CM, Lyon SR (2003) Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl Environ Microbiol 69:5060–5069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim IS, Ali IM, Dheeb BI, Abbas QA, Ramizy MA, EIsa MH, Aljameel AI (2016) Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi. Mater Sci Eng 73:665. doi:10.1016/j.msec.2016.12.121

    Article  CAS  Google Scholar 

  • Im H, Kim KM, Lee S, Ryu C (2016) Functional metagenome mining of soil for a novel gentamicin resistance gene. J Microbiol Biotechnol 26(3):521–529

    Article  CAS  PubMed  Google Scholar 

  • Ingham ER (2016) Soil bacteria. Natural resources conservation service soils. USDA. https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/health/biology/?cid=nrcs142p2_053862. Retrieved 17 Nov 2016

  • Jin L, Son Y, Yoon TK, Kang YJ, Kim W, Chung H (2013) High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass. Ecotoxicol Environ Saf 88:9–15

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903

    Article  CAS  PubMed  Google Scholar 

  • Kandi V, Kandi S (2015) Antimicrobial properties of nanomolecules: potential candidates as antibiotics in the era of multi-drug resistance. Epidemiol Health 37:e2015020

    Article  PubMed  PubMed Central  Google Scholar 

  • Kardos J, Jemnitz K, Jablonkai I, Bota A, Varga Z, Visy J, Heja L (2015) The janus facet of nanomaterials. Biomed Res Int 2015:1. doi:10.1155/2015/317184

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123

    Article  CAS  PubMed  Google Scholar 

  • Kubo-Irie M, Yokoyama M, Shinkai Y, Niki R, Takeda K, Irie M (2016) The transfer of titanium dioxide nanoparticles from the host plant to butterfly larvae through a food chain. Sci Rep 6:article number 23819. doi:10.1038/srep23819

    Article  CAS  Google Scholar 

  • Kumar N, Shah V, Walker VK (2012) Influence of a nanoparticle mixture on an arctic soil community. Environ Toxicol Chem 31:131–135

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Balachandran C, Duraipandiyan V, Ramasamy D, Ignacimuthu S, Abdullah Al-Dhabi N (2015) Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Appl Nanosci 5:169. doi:10.1007/s13204-014-0304-7

    Article  CAS  Google Scholar 

  • Kumar N, Das S, Jyoti A, Kaushik S (2016) Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumonia. Int J Pharm Pharm Sci 8(7):183–186

    CAS  Google Scholar 

  • Lara HH, Ayala-Nunez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26(4):615–621

    Article  CAS  Google Scholar 

  • Li P, Li J, Wu C, Wu Q, Li J (2005) Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917

    Article  CAS  Google Scholar 

  • Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti E, Variatzi E, Balcazar JL (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Martineau N, McLean JE, Dimkpa CO, Britt DW, Anderson AJ (2014) Components from wheat roots modify the bioactivity of ZnO and CuO nanoparticles in a soil bacterium. Environ Pollut 187:65–72

    Article  CAS  PubMed  Google Scholar 

  • Maurer-Hones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049

    Article  CAS  Google Scholar 

  • Mirhendi M, Emtiazi G, Roghanian R (2013) Antibacterial activities of nano magnetite ZnO produced in aerobic and anaerobic condition by Pseudomonas stutzeri. Jundishapur J Microbiol 6(10):10254. doi:10.5812/jjm.10254

    Article  Google Scholar 

  • Mishra VK, Kumar A (2009) Impact of metal nanoparticles on the plant growth promoting Rhizobacteria. Digest J Nanomater Biostruct 4(3):587–592

    Google Scholar 

  • Modi G, Mishra SK, Modi BS, Modi D (2013) Production and characterization of multiple drug resistant cultures isolated from hospital premises. Indian J Life Sci 3(1):7–14

    Google Scholar 

  • Muhling M, Bradford A, Readman JW, Somereld PJ, Handy RD (2009) An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res 68(5):278. doi:10.1016/j.marenvres.2009.07.001

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. J Nanotechnol Sci Appl 7:63–71

    Article  CAS  Google Scholar 

  • Naqvi SZ, Kiran U, Ali MI, Jamal A, Hameed A, Ahmed S (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria. Int J Nanomedicine 8:3187–3195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1-2):1–13

    Article  CAS  Google Scholar 

  • Neal AL (2008) What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362. doi:10.1007/s10646-008-0217-x

    Article  CAS  PubMed  Google Scholar 

  • Niazi JH, Gu MB (2009) Toxicity of metallic nanoparticles in microorganism—a review. In: Kim YJ, Platt U, Gu MB, Iwahashi H (eds) Atmospheric and biological environmental monitoring. Springer, Berlin, pp 193–206

    Chapter  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci 63:437–456

    Article  CAS  Google Scholar 

  • Panacek A, Smekalova M, Kilianova M, Prucek R, Bogdanova K, Vecerova R, Kolar M, Havrdova M, Płaza GA, Chojniak J, Zboril R, Kvitek L (2016) Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules 21:26

    Article  CAS  Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 05:233. doi:10.4172/2157-7439.1000233

    Article  Google Scholar 

  • Panyala NR, Pena-Mendez EM, Havel J (2008) Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed 6:117–129

    CAS  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13-14):1803–1815

    Article  CAS  PubMed  Google Scholar 

  • Pietrzak K, Gutarowska B (2015) Influence of the silver nanoparticles on microbial community in different environments. Acta Biochim Pol 62(4):721–724

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, Wang J, Shen Z, Wang X, Qian D, Huang A, Zhang B, Li J (2012) Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. PNAS 109(13):4944–4949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai MK, Deshmukh AP, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  PubMed  Google Scholar 

  • Raja RB, Singh P (2013) Synergistic effect of silver nanoparticles with the cephalexin antibiotic against the test strains. Biores Bull 2(4):1–8

    CAS  Google Scholar 

  • Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicol 2013:1–11. doi:10.1155/2013/574648

    Article  CAS  Google Scholar 

  • Read DS, Matzke M, Gweon HS, Newbold LK, Heggelund L, Ortiz MD, Lahive E, Spurgeon D, Svendsen C (2016) Soil pH effects on the interactions between dissolved zinc, non-nano- and nano-ZnO with soil bacterial communities. Environ Sci Pollut Res 23:4120–4128

    Article  CAS  Google Scholar 

  • Resende JA, Silva VL, Oliveira TLR, Fortunato SO, Carneiro JC, Otenio MH, Diniz CG (2014) Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bioresour Technol 153:284–291

    Article  CAS  PubMed  Google Scholar 

  • Riahi-Madvar A, Rezaee F, Jalili V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3(1):595–603

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues DF, Jaisi DP, Elimelech M (2013) Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ Sci Technol 47:625–633

    Article  CAS  PubMed  Google Scholar 

  • Rothrock MJ, Keen PL, Cook KL, Durso LM, Franklin AM, Dungan RS (2016) How should we be determining background and baseline antibiotic resistance levels in agroecosystem research? In: Antibiotics in agroecosystems: state of the science. J Environ Qual 45(2):420–431

    Google Scholar 

  • Rousk J, Ackermann K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7:e34197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836. doi:10.3390/molecules21070836

    Article  CAS  Google Scholar 

  • Sangappa M, Thiagarajan P (2015) Combating drug resistant pathogenic bacteria isolated from clinical infections, with silver oxide nanoparticles. Indian J Pham Sci 77(2):151–155

    Article  CAS  Google Scholar 

  • Sanyasi S, Majhi RK, Kumar S, Mishra M, Ghosh A, Suar M, Satyam PV, Mohapatra H, Goswami C, Goswami L (2016) Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci Rep 6:24929. doi:10.1038/srep24929

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001

    Article  CAS  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 3:168–171

    Article  CAS  PubMed  Google Scholar 

  • Shirmohammadi E, Saeidi S, Mohasseli T, Boogar AR (2014) Antibacterial effects of silver nanoparticles produced by Satureja hortensis extract on isolated Bacillus cereus from soil of Sistan plain. Int J Inf Secur 1(3):e21944

    Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710

    Article  CAS  Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, Yang DC (2016) Weissella oryzae DC6 facilitated green synthesis of AgNPs and their antimicrobial potential. Artif Cells Nanomed Biotechnol 44(6):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Nair AP, Kr S, Methew J, Ek R (2014) Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative staphylococci isolated from clinical samples. Appl Biochem Biotechnol 173:449–460. doi:10.1007/s12010-014-0852-z

    Article  CAS  PubMed  Google Scholar 

  • Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1

    Article  Google Scholar 

  • Tiwari M, Jain P, Hariharapura RC, Narayanan K, Bhat UK, Udupa N, Rao JV (2016) Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem 51:1348–1356

    Article  CAS  Google Scholar 

  • Tong Z, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Tyc O, Berg M, Gerards S, vanVeen JA, Raaijmakers JM, deBoer W, Garbeva P (2014) Impact of inter specific interactions on antimicrobial activity among soil bacteria. Front Microbiol 5:1–10

    Google Scholar 

  • Unrine J, Bertsch P, Hunyadi S (2008) Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. In: Grassian VH (ed) Nanoscience and nanotechnology: environmental and health impacts. Wiley, Hoboken, NJ. doi:10.1002/9780470396612.ch14

    Google Scholar 

  • Upadhyay S, Mustafa M, Joshi SR (2016) Naturally evolving extended spectrum cephalosporin resistance in soil borne isolates of Enterobacteriaceae. Natl Acad Sci Lett 39(3):181–184

    Article  CAS  Google Scholar 

  • USDA/Agricultural Research Service (2016) Antibiotic resistance can occur naturally in soil bacteria. Science Daily, September 27. Retrieved 17 Nov 2016 from www.sciencedaily.com/releases/2016/09/160927151524.htm

  • Walsh F, Duffy B (2013) The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. PLoS One 8(6):e65567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Tang H, Wu D, Liu D, Liu Y, Cao A, Wang H (2016) Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano 3:788–798

    Article  CAS  Google Scholar 

  • Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792

    Article  PubMed  Google Scholar 

  • Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28:101–112

    Article  CAS  PubMed  Google Scholar 

  • Xing B, Senesi N, Vecitis CD (2016) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Hoboken, NJ. ISBN:978–1–119-27582-4. 1119275822

    Google Scholar 

  • Zeliadt N (2010) Silver beware: antimicrobial nanoparticles in soil may harm plant life. https://www.scientificamerican.com/article/silver-beware-antimicrobial-nanoparticles-in-soil-may-harm-plant-life. Last accessed 30 Nov 2016

  • Zhang Q, Dick WA (2014) Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics. Sci Total Environ 493:445–453

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Wang C, Zhao Q, WangY HM, Wang J, Wang S (2016) Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. J Hazard Mater 320:10–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author gratefully acknowledges the support received from the Centre for Climate Research and Development (CCRD), COMSATS IIT, Islamabad. The CCRD has no financial and material contribution in writing and submission of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toqeer Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, T. (2017). Elucidation of Emerging Nanomaterials Impacts on Antibiotic Resistance Against Soil and Aquatic Microflora. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_14

Download citation

Publish with us

Policies and ethics