Skip to main content

Monitoring of Antibiotics and Antibiotic Resistance Genes in Agroecosystems

  • Chapter
  • First Online:
Antibiotics and Antibiotics Resistance Genes in Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

  • 1934 Accesses

Abstract

Antibiotics are frequently administered by humans for certain therapeutic purposes. Antibiotics are principally used in human medicine and agriculture. Their secondary utilization in animal livestock production at subtherapeutic level is for growth enhancement and improvement of feed competence. The presence of antibiotics, antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in agroecosystem has turned into a significant area of concern for environment and public health. Extensive use of antibiotics and the application of animal wastes to agricultural lands play a significant role in the induction of antibiotic-related sedimentation and contamination into the agroecosystems. The impacts of introduction of antibiotic contaminants into the environment are unknown, and serious concerns have been raised about the health of human beings, animals, and ecosystems. The occurrence and fate of antibiotics and antibiotic resistance has been extensively focused over the past decade. However, standard methods, interpretations, and practices to investigate environmental samples are limited exploiting future research needs to be evident. Different culture-based molecular approaches are used as a part of evaluation of antibiotic resistance in samples collected in agroecosystem. Literature urges researchers to incorporate baseline information within the review framework and background data from outside the review framework to enhance the state of science in antibiotic resistance-related probe studies in agroecosystems. This chapter discusses the assembly of work that concentrates on aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in the innate environments with emphasis on culture and molecular-based methods and mechanisms relevant to the soil environments.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-66260-2_22.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aga DS, O’Connor S, Ensley S, Payero JO, Snow D, Tarkalson D (2005) Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J Agric Food Chem 53:7165–7171

    Article  CAS  PubMed  Google Scholar 

  • Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS (2016) Challenges in the measurement of antibiotics and in evaluating their impacts in agroecosystems: a critical review. J Environ Qual 45:407–419

    Article  CAS  PubMed  Google Scholar 

  • Alekshun MN, Levy SB (2007) Molecular mechanisms of antibacterial multidrug resistance. Cell 128:1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auerbach EA, Seyfried EE, McMahon KD (2007) Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res 41:1143–1151

    Article  CAS  PubMed  Google Scholar 

  • Awad YM, Kim S-C, El-Azeem SAA, Kim K-H, Kim K-R, Kim K, Jeon C, Lee SS, Ok YS (2014) Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environ Earth Sci 71:1433–1440

    Article  CAS  Google Scholar 

  • Awad YM, Kim KR, Kim S-C, Kim K, Lee SR, Lee SS, Ok YS (2015) Monitoring antibiotic residues and corresponding antibiotic resistance genes in an agroecosystem. J Chem 2015:1–7

    Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40:751–757

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:648

    Article  PubMed  PubMed Central  Google Scholar 

  • Binh CT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    Article  CAS  PubMed  Google Scholar 

  • Boles TH, Wells MJ (2010) Analysis of amphetamine and methamphetamine as emerging pollutants in wastewater and wastewater-impacted streams. J Chromatogr A 1217:2561–2568

    Article  CAS  PubMed  Google Scholar 

  • Boxall ABA, Fogg LA, Kay P, Blackwel PA, Pemberton EJ, Croxford A (2003) Prioritisation of veterinary medicines in the UK environment. Toxicol Lett 142:207–218

    Article  CAS  PubMed  Google Scholar 

  • Burdett V (1991) Purification and characterization of Tet (M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem 266:2872–2877

    CAS  PubMed  Google Scholar 

  • Casey JA, Curriero FC, Cosgrove SE, Nachman KE, Schwartz BS (2013) High-density livestock operations, crop field application of manure, and risk of community-associated methicillin-resistant Staphylococcus aureus infection in Pennsylvania. JAMA Intern Med 173:1980–1990

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Wang W, Regev-Yochay G, Lipsitch M, Hanage WP (2015) Antibiotics in agriculture and the risk to human health: how worried should we be? Evol Appl 8:240–247

    Article  PubMed  Google Scholar 

  • Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y-F, Yannarell AC, Maxwell S, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38:1086–1108

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Cruz MS, Barceló D (2007) Recent advances in LC-MS residue analysis of veterinary medicines in the terrestrial environment. TrAC Trends Anal Chem 26:637–646

    Article  Google Scholar 

  • Dodd MC (2012) Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit 14:1754–1771

    Article  CAS  PubMed  Google Scholar 

  • Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein FC, McManus PS, Handelsman J (2010) Metagenomics reveals antibiotic resistance genes encoding predicted bifunctional proteins in apple orchard soil. Appl Environ Microbiol 76(13):4396–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32:309–327

    Article  CAS  Google Scholar 

  • Durso LM, Miller DN, Wienhold BJ (2012) Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS One 7:e48325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, Roberts MC, Rothrock MJ, Snow DD, Watson JE, Dungan RS (2016) Antibiotics in agroecosystems: introduction to the special section. J Environ Qual 45:377–393

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Armisen T, Anzil A, Cornelis P, Chevreuil M, Servais P (2013) Identification of antimicrobial resistant bacteria in rivers: insights into the cultivation bias. Water Res 47:4938–4947

    Article  CAS  PubMed  Google Scholar 

  • Garder JL, Moorman TB, Soupir ML (2014) Transport and persistence of tylosin-resistant enterococci, genes, and tylosin in soil and drainage water from fields receiving Swine manure. J Environ Qual 43:1484–1493

    Article  PubMed  Google Scholar 

  • Greig J, Rajic A, Young I, Mascarenhas M, Waddell L, LeJeune J (2015) A scoping review of the role of wildlife in the transmission of bacterial pathogens and antimicrobial resistance to the food Chain. Zoonoses Public Health 62:269–284

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Xie W, Chen J (2015) Assessing the combined effects from two kinds of cephalosporins on green alga (Chlorella pyrenoidosa) based on response surface methodology. Food Chem Toxicol 78:116–121

    Article  CAS  PubMed  Google Scholar 

  • Halling-Sørensen B, Nielsen SN, Lanzky P, Ingerslev F, Lützhøft HH, Jørgensen S (1998) Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere 36:357–393

    Article  PubMed  Google Scholar 

  • Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  CAS  PubMed  Google Scholar 

  • Johnson JV, Yost RA, Kelley PE, Bradford DC (1990) Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Anal Chem 62:2162–2172

    Article  CAS  Google Scholar 

  • Johnston C, Martin B, Fichant G, Polard P, Claverys J-P (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12:181–196

    Article  CAS  PubMed  Google Scholar 

  • Kim S-C, Carlson K (2005) LC–MS2 for quantifying trace amounts of pharmaceutical compounds in soil and sediment matrices. TrAC Trends Anal Chem 24:635–644

    Article  CAS  Google Scholar 

  • Kim S-C, Carlson K (2007) Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ Sci Technol 41:50–57

    Article  CAS  PubMed  Google Scholar 

  • Klumper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sorensen SJ, Smets BF (2015) Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J 9:934–945

    Article  CAS  PubMed  Google Scholar 

  • Knapp CW, Dolfing J, Ehlert PA, Graham DW (2009) Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ Sci Technol 44:580–587

    Article  Google Scholar 

  • Koike S, Krapac IG, Oliver HD, Yannarell AC, Chee-Sanford JC, Aminov RI, Mackie RI (2007) Monitoring and source tracking of tetracycline resistance genes in lagoons and groundwater adjacent to swine production facilities over a 3-year period. Appl Environ Microbiol 73:4813–4823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, WeijdegÃ¥rd B, Söderström H, Larsson DJ (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS one 6:e17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54

    Article  CAS  Google Scholar 

  • Kumar RR, Lee JT, Cho JY (2012) Fate, occurrence, and toxicity of veterinary antibiotics in environment. J Korean Soc Appl Biol Chem 55:701–709

    Article  CAS  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  PubMed  Google Scholar 

  • Li C, Chen J, Wang J, Ma Z, Han P, Luan Y, Lu A (2015) Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci Total Environ 521–522:101–107

    Article  PubMed  Google Scholar 

  • Lin D, Chen K, Li R, Liu L, Guo J, Yao W, Chen S (2014) Selection of target mutation in rat gastrointestinal tract E. coli by minute dosage of enrofloxacin. Front Microbiol 5:468

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhang J, Gao B, Feng S (2014) Combined effects of two antibiotic contaminants on Microcystis aeruginosa. J Hazard Mater 279:148–155

    Article  CAS  PubMed  Google Scholar 

  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luby E, Ibekwe AM, Zilles J, Pruden A (2016) Molecular methods for assessment of antibiotic resistance in agricultural ecosystems: prospects and challenges. J Environ Qual 45:441–453

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  CAS  PubMed  Google Scholar 

  • McLain J, Williams C (2014) Sustainability of water reclamation: long-term recharge with reclaimed wastewater does not enhance antibiotic resistance in sediment bacteria. Sustainability 6:1313

    Article  CAS  Google Scholar 

  • McLain JE, Cytryn E, Durso LM, Young S (2016) Culture-based methods for detection of antibiotic resistance in agroecosystems: advantages, challenges, and gaps in knowledge. J Environ Qual 45:432–440

    Article  CAS  PubMed  Google Scholar 

  • Musovic S, Dechesne A, Sorensen J, Smets BF (2010) Novel assay to assess permissiveness of a soil microbial community toward receipt of mobile genetic elements. Appl Environ Microbiol 76:4813–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nachnani S, Scuteri A, Newman MG, Avanessian AB, Lomeli SL (1992) E-test: a new technique for antimicrobial susceptibility testing for periodontal microorganisms. J Periodontol 63:576–583

    Article  CAS  PubMed  Google Scholar 

  • Naidu R, Semple KT, Megharaj M, Juhasz AL, Bolan NS, Gupta SK, Clothier BE, Schulin R (2008) Bioavailability: definition, assessment and implications for risk assessment. Dev Soil Sci 32:39–51

    CAS  Google Scholar 

  • Nandi S, Maurer JJ, Hofacre C, Summers AO (2004) Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci USA 101:7118–7122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nesme J, Simonet P (2015) The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 17:913–930

    Article  PubMed  Google Scholar 

  • Nordmann P, Poirel L, Dortet L (2012) Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 18:1503–1507

    Article  PubMed  PubMed Central  Google Scholar 

  • Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. J Intern Med 252:91–106

    Article  CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  CAS  PubMed  Google Scholar 

  • Ok YS, Kim S-C, Kim K-R, Lee SS, Moon DH, Lim KJ, Sung J-K, Hur S-O, Yang JE (2011) Monitoring of selected veterinary antibiotics in environmental compartments near a composting facility in Gangwon Province, Korea. Environ Monit Assess 174:693–701

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski AC, Wang W, Koteva K, Barton HA, McArthur AG, Wright GD (2016) A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 7:13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei R, Kim S-C, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40:2427–2435

    Article  CAS  PubMed  Google Scholar 

  • Pepper IL, Gerba CP (2009) Cultural methods. In: Environmental microbiology, doi: 10.1016/B978-0-12-370519-8.00010-9

  • Persoons D, Bollaerts K, Smet A, Herman L, Heyndrickx M, Martel A, Butaye P, Catry B, Haesebrouck F, Dewulf J (2011) The importance of sample size in the determination of a flock-level antimicrobial resistance profile for Escherichia coli in broilers. Microb Drug Resist 17:513–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Pillai DK (2011) Assessment of pet dogs as a reservoir of antibiotic resistant bacteria. Kansas State University

    Google Scholar 

  • Pruden A, Pei R, Storteboom H, Carlson KH (2006) Antibiotic resistance genes as emerging contaminants: studies in Northern Colorado. Environ Sci Technol 40:7445–7450

    Article  CAS  PubMed  Google Scholar 

  • Rysz M, Alvarez PJ (2004) Amplification and attenuation of tetracycline resistance in soil bacteria: aquifer column experiments. Water Res 38:3705–3712

    Article  CAS  PubMed  Google Scholar 

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  • Schnappinger D, Hillen W (1996) Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch Microbiol 165:359–369

    Article  CAS  PubMed  Google Scholar 

  • Sengeløv G, Agersø Y, Halling-Sørensen B, Baloda SB, Andersen JS, Jensen LB (2003) Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int 28:587–595

    Article  PubMed  Google Scholar 

  • Solis Y, Chavarria G, Garcia F, Rodriguez C (2011) Exposure of a tropical soil to MG/KG of oxytetracycline elicits hormetic responses in the catabolic activities of its microbial community. Dose Response 9:434–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subedi B, Kannan K (2014) Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis. Environ Sci Technol 48:6661–6670

    Article  CAS  PubMed  Google Scholar 

  • Tasho RP, Cho JY (2016) Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: a review. Sci Total Environ 563:366–376

    Article  PubMed  Google Scholar 

  • Toth JD, Feng Y, Dou Z (2011) Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification. Soil Biol Biochem 43:2470–2472

    Article  CAS  Google Scholar 

  • Tran-Thanh D, Buttars S, Wen Y, Wilson C, Done SJ (2010) Cyclooxygenase-2 inhibition for the prophylaxis and treatment of preinvasive breast cancer in a her-2/neu mouse model. Cancer Prev Res (Phila) 3:202–211

    Article  CAS  Google Scholar 

  • Udikovic-Kolic N, Wichmann F, Broderick NA, Handelsman J (2014) Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc Natl Acad Sci USA 111:15202–15207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira AR, Collignon P, Aarestrup FM, McEwen SA, Hendriksen RS, Hald T, Wegener HC (2011) Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: an ecological study. Foodborne Pathog Dis 8:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Antibiotic resistance: global report on surveillance 2014. World Health Organization, Geneva

    Google Scholar 

  • Wilga J, Kot-Wasik A, Namiesnik J (2008) Studies of human and veterinary drugs’ fate in environmental solid samples—analytical problems. J Chromatogr Sci 46:601–608

    Article  CAS  PubMed  Google Scholar 

  • Williams-Nguyen J, Sallach JB, Bartelt-Hunt S, Boxall AB, Durso LM, McLain JE, Singer RS, Snow DD, Zilles JL (2016) Antibiotics and antibiotic resistance in agroecosystems: state of the science. J Environ Qual 45:394–406

    Article  CAS  PubMed  Google Scholar 

  • Witte W (2004) International dissemination of antibiotic resistant strains of bacterial pathogens. Infect Genet Evol 4:187–191

    Article  CAS  PubMed  Google Scholar 

  • Youngquist CP (2014) Local biosolids compost: agricultural use, fate of antibiotics, and community engagement. Washington State University

    Google Scholar 

  • Zhang Y, Zhang C, Parker DB, Snow DD, Zhou Z, Li X (2013) Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons. Sci Total Environ 463–464:631–638

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarfraz Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, S. et al. (2017). Monitoring of Antibiotics and Antibiotic Resistance Genes in Agroecosystems. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_5

Download citation

Publish with us

Policies and ethics