Skip to main content

Chlamydomonas: Hydrogenase and Hydrogen Production

  • Chapter
  • First Online:
Chlamydomonas: Biotechnology and Biomedicine

Part of the book series: Microbiology Monographs ((MICROMONO,volume 31))

  • 860 Accesses

Abstract

An important aspect of Chlamydomonas reinhardtii’s metabolism is its ability to produce molecular hydrogen (H2) from protons and electrons. Hydrogen production is catalysed by two [FeFe]-hydrogenases, HYDA1 and HYDA2, although HYDA1 is the main isoform, accounting for ∼75% of the H2 produced. Hydrogen production can be light dependent, with the hydrogenase receiving electrons from the photosynthetic electron transport chain via the ferredoxin PETF, or light independent, where H2 is produced via fermentation in the dark. Hydrogen production was first reported in microalgae in the early 1940s; however, due to HYDA gene expression being induced by anaerobiosis and the extreme oxygen sensitivity of the enzyme, this process only occurred transiently at low levels when the algae were subjected to anaerobic or hypoxic conditions. It was thus considered nothing more than a biological curiosity until the early 2000s, when a method temporally separating oxygenic photosynthesis and H2 production was developed, which allowed sustained H2 production in the light over the course of a few days. Light-driven H2 production has the highest theoretical photon conversion efficiency and is thus of considerable biotechnological interest. However, the calculated theoretical efficiencies are still not achievable in practice, despite the implementation of a wide range of engineering strategies. For an improved H2 production, a better understanding of the underlying biology is needed. C. reinhardtii is the ideal organism in which to study H2 production, due to the many molecular tools available and the simplicity and long history of study of its hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamska A, Silakov A, Lambertz C, Rudiger O, Happe T, Reijerse E, Lubitz W (2012) Identification and characterization of the “super-reduced” state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chem Int Ed Engl 51(46):11458–11462. doi:10.1002/anie.201204800

    Article  CAS  PubMed  Google Scholar 

  • Adamska-Venkatesh A, Krawietz D, Siebel J, Weber K, Happe T, Reijerse E, Lubitz W (2014) New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. J Am Chem Soc 136(32):11339–11346. doi:10.1021/ja503390c

    Article  CAS  PubMed  Google Scholar 

  • Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, Rubin AB (2009) Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy 34(22):9087–9094. doi:10.1016/j.ijhydene.2009.09.011

    Article  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Tyystjarvi E (2015) Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. Photosynth Res 125(3):357–381. doi:10.1007/s11120-015-0157-2

    Article  CAS  PubMed  Google Scholar 

  • Atteia A, van Lis R, Tielens AGM, Martin WF (2013) Anaerobic energy metabolism in unicellular photosynthetic eukaryotes. Biochim Biophys Acta Bioenerg 1827(2):210–223. doi:10.1016/j.bbabio.2012.08.002

    Article  CAS  Google Scholar 

  • Bachmeier A, Esselborn J, Hexter SV, Kramer T, Klein K, Happe T, McGrady JE, Myers WK, Armstrong FA (2015) How formaldehyde inhibits hydrogen evolution by [FeFe]-hydrogenases: determination by (1)(3)C ENDOR of direct Fe-C coordination and order of electron and proton transfers. J Am Chem Soc 137(16):5381–5389. doi:10.1021/ja513074m

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153. doi:10.1146/annurev-arplant-050213-035759

    Article  CAS  PubMed  Google Scholar 

  • Ball SG, Dirick L, Decq A, Martiat JC, Matagne RF (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 66(1):1–9. doi:10.1016/0168-9452(90)90162-h

    Article  CAS  Google Scholar 

  • Baltz A, Kieu-Van D, Beyly A, Auroy P, Richaud P, Cournac L, Peltier G (2014) Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of Plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol 165(3):1344–1352. doi:10.1104/pp.114.240432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37(10):8834–8839. doi:10.1016/j.ijhydene.2012.01.068

    Article  CAS  Google Scholar 

  • Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142(1):70–77. doi:10.1016/j.jbiotec.2009.02.015

    Article  CAS  PubMed  Google Scholar 

  • Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of FeFe-hydrogenases. Nature 499(7456):66–69. doi:10.1038/nature12239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betz JN, Boswell NW, Fugate CJ, Holliday GL, Akiva E, Scott AG, Babbitt PC, Peters JW, Shepard EM, Broderick JB (2015) [FeFe]-hydrogenase maturation: insights into the role HydE plays in dithiomethylamine biosynthesis. Biochemistry 54(9):1807–1818. doi:10.1021/bi501205e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick JB, Byer AS, Duschene KS, Duffus BR, Betz JN, Shepard EM, Peters JW (2014) H-cluster assembly during maturation of the [FeFe]-hydrogenase. J Biol Inorg Chem 19(6):747–757. doi:10.1007/s00775-014-1168-8

    Article  CAS  PubMed  Google Scholar 

  • Burgess SJ, Tamburic B, Zemichael F, Hellgardt K, Nixon PJ (2011) Solar-driven hydrogen production in green algae. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 75, pp 71–110. doi:10.1016/b978-0-12-387046-9.00004-9

    Google Scholar 

  • Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23(4):1273–1292. doi:10.1105/tpc.111.084400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84(1–3):289–296. doi:10.1007/s11120-004-7157-y

    Article  CAS  PubMed  Google Scholar 

  • Chien LF, Kuo TT, Liu BH, Lin HD, Feng TY, Huang CC (2012) Solar-to-bio H2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy 37(23):17738–17748. doi:10.1016/j.ijhydene.2012.09.068

    Article  CAS  Google Scholar 

  • Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 151(2):631–640. doi:10.1104/pp.109.144576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen J, Kim K, Posewitz M, Ghirardi ML, Schulten K, Seibert M, King P (2005) Molecular dynamics and experimental investigation of H2 and O2 diffusion in Fe-hydrogenase. Biochem Soc Trans 33:80–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish AJ, Gaertner K, Yang H, Peters JW, Hegg EL (2011) Mechanism of proton transfer in [FeFe]-hydrogenase from Clostridium pasteurianum. J Biol Chem 286(44):38341–38347. doi:10.1074/jbc.M111.254664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das D, Khanna N, Dasgupta CN (2014) Biohydrogen production: fundamentals and technology advances. CRC Press, London

    Book  Google Scholar 

  • Dementin S, Leroux F, Cournac L, de Lacey AL, Volbeda A, Leger C, Burlat B, Martinez N, Champ S, Martin L, Sanganas O, Haumann M, Fernandez VM, Guigliarelli B, Fontecilla-Camps JC, Rousset M (2009) Introduction of methionines in the gas channel makes NiFe hydrogenase aero-tolerant. J Am Chem Soc 131(29):10156–10164. doi:10.1021/ja9018258

    Article  CAS  PubMed  Google Scholar 

  • Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 284(7):4148–4157. doi:10.1074/jbc.M804546200

    Article  CAS  PubMed  Google Scholar 

  • Dubini A, Ghirardi ML (2015) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 123(3):241–253. doi:10.1007/s11120-014-9991-x

    Article  CAS  PubMed  Google Scholar 

  • Erbes DL, King D, Gibbs M (1979) Inactivation of hydrogenase in cell-free extracts and whole cells of Chlamydomonas reinhardi by oxygen. Plant Physiol 63(6):1138–1142

    Google Scholar 

  • Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Nothl J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Spontaneous activation of FeFe-hydrogenases by an inorganic 2Fe active site mimic. Nat Chem Biol 9(10):607–609. doi:10.1038/nchembio.1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esselborn J, Muraki N, Klein K, Engelbrecht V, Metzler-Nolte N, Apfel UP, Hofmann E, Kurisu G, Happe T (2016) A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem Sci 7(2):959–968. doi:10.1039/c5sc03397g

    Article  CAS  Google Scholar 

  • Flynn T, Ghirardi ML, Seibert M (2002) Accumulation of O2-tolerant phenotypes in H2-producing strains of Chlamydomonas reinhardtii by sequential applications of chemical mutagenesis and selection. Int J Hydrog Energy 27(11–12):1421–1430. doi:10.1016/s0360-3199(02)00117-9

    Article  CAS  Google Scholar 

  • Forestier M, King P, Zhang LP, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270(13):2750–2758. doi:10.1046/j.1432-1033.2003.03656

    Article  CAS  PubMed  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71(10):6199–6205. doi:10.1128/aem.71.10.6199-6205.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240. doi:10.1085/jgp.26.2.219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghirardi ML (2015) Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases. Photosynth Res 125(3):383–393. doi:10.1007/s11120-015-0158-1

    Article  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness P-C, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91. doi:10.1146/annurev.arplant.58.032806.103848

    Article  CAS  PubMed  Google Scholar 

  • Godde D, Trebst A (1980) NADH as electron donor for the photosynthetic membrane of Chlamydomonas reinhardtii. Arch Microbiol 127(3):245–252. doi:10.1007/bf00427200

    Article  CAS  Google Scholar 

  • Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of FeFe-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131(41):14979–14989. doi:10.1021/ja905388j

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Ballester D, Luis Jurado-Oller J, Fernandez E (2015) Relevance of nutrient media composition for hydrogen production in Chlamydomonas. Photosynth Res 125(3):395–406. doi:10.1007/s11120-015-0152-7

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Gonzalez-Ballester D, Shibagaki N, Pootakham W, Moseley J, Pootakham W (2010) Responses to macronutrient deprivation. In: Abiotic stress adaptation in plants: physiological, molecular and genomic foundation. Springer, Dordrecht. doi:10.1007/978-90-481-3112-9_15

    Google Scholar 

  • Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M (2011) Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol 190(2):279–288. doi:10.1111/j.1469-8137.2010.03534.x

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK, Kumari S, Reddy K, Bux F (2013) Trends in biohydrogen production: major challenges and state-of-the-art developments. Environ Technol 34(13–14):1653–1670. doi:10.1080/09593330.2013.822022

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269(3):1022–1032. doi:10.1046/j.0014-2956.2001.02743.x

    Article  CAS  PubMed  Google Scholar 

  • Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214(2):475–481. doi:10.1111/j.1432-1033.1993.tb17944.x

    Article  CAS  PubMed  Google Scholar 

  • Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in the green alga Chlamydomonas reinhardtii. Eur J Biochem 222(3):769–774. doi:10.1111/j.1432-1033.1994.tb18923.x

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Happe T (2011) Alternative photosynthetic electron transport pathways during anaerobiosis in the green alga Chlamydomonas reinhardtii. BBA-Bioenergetics 1807(8):919–926. doi:10.1016/j.bbabio.2011.02.010

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008a) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227(2):397–407. doi:10.1007/s00425-007-0626-8

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Jacobs J, Happe T (2008b) Biochemical and physiological characterization of the pyruvate Formate-Lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7(3):518–526. doi:10.1128/ec.00368-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemschemeier A, Casero D, Liu BS, Benning C, Pellegrini M, Happe T, Merchant SS (2013) Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii Transcriptome to dark anoxia. Plant Cell 25(9):3186–3211. doi:10.1105/tpc.113.115741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hexter SV, Grey F, Happe T, Climent V, Armstrong FA (2012) Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc Natl Acad Sci U S A 109(29):11516–11521. doi:10.1073/pnas.1204770109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong G, Pachter R (2012) Inhibition of biocatalysis in [Fe–Fe] hydrogenase by oxygen: molecular dynamics and density functional theory calculations. ACS Chem Biol 7(7):1268–1275. doi:10.1021/cb3001149

    Article  CAS  PubMed  Google Scholar 

  • Hwang J-H, Kim H-C, Choi J-A, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR, Song H, Nam I-H, Kim S-N, Lee W, Park D, Kim Y, Choi J, Ji M-K, Jung W, Jeon B-H (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nat Commun 5. doi:10.1038/ncomms4234

  • Jans F, Mignolet E, Houyoux P-A, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P) H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci U S A 105(51):20546–20551. doi:10.1073/pnas.0806896105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson X, Steinbeck J, Dent RM, Takahashi H, Richaud P, Ozawa SI, Houille-Vernes L, Petroutsos D, Rappaport F, Grossman AR, Niyogi KK, Hippler M, Alric J (2014) Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATPase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol 165(1):438–452. doi:10.1104/pp.113.233593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T (2012) Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J Biol Chem 287(2):1489–1499. doi:10.1074/jbc.M111.305797

    Article  PubMed  CAS  Google Scholar 

  • Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML (2005) The effect of sulfur re-addition on H2 photoproduction by sulfur-deprived green algae. Photosynth Res 85(3):295–305. doi:10.1007/s11120-005-5105-0

    Article  CAS  PubMed  Google Scholar 

  • Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36(3):2044–2048. doi:10.1016/j.ijhydene.2010.10.041

    Article  CAS  Google Scholar 

  • Kropat J, Tottey S, Birkenbihl RP, Depege N, Huijser P, Merchant S (2005) A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc Natl Acad Sci U S A 102(51):18730–18735. doi:10.1073/pnas.0507693102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280(40):34170–34177. doi:10.1074/jbc.M503840200

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Das D (2013) CO2 sequestration and hydrogen production using cyanobacteria and green algae. In: Natural and artificial photosynthesis. Wiley, New York, pp 173–215. doi:10.1002/9781118659892.ch6

    Chapter  Google Scholar 

  • Lakatos G, Deak Z, Vass I, Retfalvi T, Rozgonyi S, Rakhely G, Oerdoeg V, Kondorosi E, Maroti G (2014) Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem 16(11):4716–4727. doi:10.1039/c4gc00745j

    Article  CAS  Google Scholar 

  • Lambertz C, Leidel N, Havelius KGV, Noth J, Chernev P, Winkler M, Happe T, Haumann M (2011) O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J Biol Chem 286(47):40614–40623. doi:10.1074/jbc.M111.283648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J (2013) Designer transgenic algae for photobiological production of hydrogen from water. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 371–404. doi:10.1007/978-1-4614-3348-4_20

    Chapter  Google Scholar 

  • Lee JW, Greenbaum E (2003) A new oxygen sensitivity and its potential application in photosynthetic H2 production. Appl Biochem Biotechnol 105:303–313

    Article  PubMed  Google Scholar 

  • Lin H-D, Liu B-H, Kuo T-T, Tsai H-C, Feng T-Y, Huang C-C, Chien L-F (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT. Bioresour Technol 143:154–162. doi:10.1016/j.biortech.2013.05.101

    Article  CAS  PubMed  Google Scholar 

  • Long H, King PW, Ghirardi ML, Kim K (2009) Hydrogenase/Ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association. J Phys Chem A 113(16):4060–4067. doi:10.1021/jp810409z

    Article  CAS  PubMed  Google Scholar 

  • Lubitz W, Ogata H, Rudiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114(8):4081–4148. doi:10.1021/cr4005814

    Article  CAS  PubMed  Google Scholar 

  • Lubner CE, Applegate AM, Knoerzer P, Ganago A, Bryant DA, Happe T, Golbeck JH (2011) Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proc Natl Acad Sci U S A 108(52):20988–20991. doi:10.1073/pnas.1114660108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig M, Schulz-Friedrich R, Appel J (2006) Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases. J Mol Evol 63(6):758–768. doi:10.1007/s00239-006-0001-6

    Article  CAS  PubMed  Google Scholar 

  • Maione TE, Gibbs M (1986) Association of the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii with photoreduction and the oxyhydrogen reaction. Plant Physiol 80(2):364–368. doi:10.1104/pp.80.2.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127(3):740–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A, Neidhardt J, Benemann J (1999) Dunaliella salina (Chlorophyta) with small chlorophyll antenna sizes exhibit higher photosynthetic productivities and photon use efficiencies than normally pigmented cells. J Appl Phycol 10(6):515–525. doi:10.1023/a:1008076231267

    Article  Google Scholar 

  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–135. doi:10.1104/pp.122.1.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuser JE, D’Adamo S, Jinkerson RE, Mus F, Yang WQ, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: insight into the role of HYDA2 in H2 production. Biochem Biophys Res Commun 417(2):704–709. doi:10.1016/j.bbrc.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  • Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64(9):1063–1084. doi:10.1007/s00018-007-6477-4

    Article  CAS  PubMed  Google Scholar 

  • Mignolet E, Lecler R, Ghysels B, Remacle C, Franck F (2012) Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H2 photoproduction in sulphur-deprived Chlamydomonas reinhardtii. J Biotechnol 162(1):81–88. doi:10.1016/j.jbiotec.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  • Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, Valetti F (2012) Site saturation mutagenesis demonstrates a central role for cysteine 298 as proton donor to the catalytic site in CaHydA [FeFe]-Hydrogenase. Plos One 7(10):e48400. doi:10.1371/journal.Pone.0048400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydADEFG. Nature 465(7295):248–251. doi:10.1038/nature08993

    Article  CAS  PubMed  Google Scholar 

  • Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19(8):1038–1052. doi:10.1016/j.str.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  • Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW (2014) Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. J Am Chem Soc 136(43):15394–15402. doi:10.1021/ja508629m

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Cournac L, Cardettini W, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg 1708(3):322–332. doi:10.1016/j.bbabio.2005.05.003

    Article  CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii – anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282(35):25475–25486. doi:10.1074/jbc.M701415200

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug JH, Thomas-Hall SR, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814. doi:10.1111/j.1467-7652.2007.00285.x

    Article  CAS  PubMed  Google Scholar 

  • Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Struct Fold Des 7(1):13–23. doi:10.1016/s0969-2126(99)80005-7

    Article  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50(1):333–359. doi:10.1146/annurev.Arplant.50.1.333

    Article  CAS  PubMed  Google Scholar 

  • Noth J, Krawietz D, Hemschemeier A, Happe T (2013) Pyruvate: ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 288(6):4368–4377. doi:10.1074/jbc.M112.429985

    Article  CAS  PubMed  Google Scholar 

  • Noth J, Kositzki R, Klein K, Winkler M, Haumann M, Happe T (2015) Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation. Sci Rep 5:13978. doi:10.1038/srep13978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kuegler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. Plos One 8(4):e61375. doi:10.1371/journal.Pone.0061375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oey M, Sawyer AL, Ross IL, Hankamer B (2016) Challenges and opportunities for hydrogen production from microalgae. Plant Biotechnol J 14(7):1487–1499. doi:10.1111/pbi.12516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnier A, Martin L, Zeppieri L, Nicolet Y, Fontecilla-Camps JC (2016) CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. Proc Natl Acad Sci U S A 113(1):104–109. doi:10.1073/pnas.1515842113

    Article  CAS  PubMed  Google Scholar 

  • Paila YD, Richardson LGL, Schnell DJ (2015) New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. J Mol Biol 427(5):1038–1060. doi:10.1016/j.jmb.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  • Pape M, Lambertz C, Happe T, Hemschemeier A (2012) Differential expression of the Chlamydomonas [FeFe]-hydrogenase-encoding HYDA1 gene is regulated by the copper response regulator1. Plant Physiol 159(4):1700–1712. doi:10.1104/pp.112.200162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascal AA, Liu Z, Broess K, van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436(7047):134–137

    Article  CAS  PubMed  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282(5395):1853–1858. doi:10.1126/science.282.5395.1853

    Article  CAS  PubMed  Google Scholar 

  • Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta Mol Cell Res 1853(6):1350–1369. doi:10.1016/j.bbamcr.2014.11.021

    Article  CAS  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235(4):729–745. doi:10.1007/s00425-011-1537-2

    Article  CAS  PubMed  Google Scholar 

  • Pinto TS, Malcata FX, Arrabaça JD, Silva JM, Spreitzer RJ, Esquível MG (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97(12):5635–5643. doi:10.1007/s00253-013-4920-z

    Article  CAS  PubMed  Google Scholar 

  • Polle JEW, Kanakagiri SD, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217(1):49–59. doi:10.1007/s00425-002-0968-1

    CAS  PubMed  Google Scholar 

  • Posewitz MC, King PW, Smolinski SL, Zhang LP, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active Fe hydrogenase. J Biol Chem 279(24):25711–25720. doi:10.1074/jbc.M403206200

    Article  CAS  PubMed  Google Scholar 

  • Reifschneider-Wegner K, Kanygin A, Redding KE (2014) Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. Int J Hydrog Energy 39(8):3657–3665. doi:10.1016/j.ijhydene.2013.12.157

    Article  CAS  Google Scholar 

  • Robertson D, Boynton JE, Gillham NW (1990) Cotranscription of the wild-type chloroplast atpE gene encoding the CF1/CF0 epsilon subunit with the 3′ half of the rps7 gene in Chlamydomonas reinhardtii and characterization of frameshift mutations in atpE. Mol Gen Genet 221(2):155–163

    Article  CAS  PubMed  Google Scholar 

  • Roessler PG, Lien S (1984) Purification of hydrogenase from Chlamydomonas reinhardtii. Plant Physiol 75(3):705–709. doi:10.1104/pp.75.3.705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SP (2006) The active site of the [FeFe]-hydrogenase from desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11(1):102–118

    Article  CAS  PubMed  Google Scholar 

  • Ruehle T, Hemschemeier A, Melis A, Happe T (2008) A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol 8. doi:10.1186/1471-2229-8-107

  • Rumpel S, Siebel JF, Fares C, Duan J, Reijerse E, Happe T, Lubitz W, Winkler M (2014) Enhancing hydrogen production of microalgae by redirecting electrons from photosystem I to hydrogenase. Energy Environ Sci 7(10):3296–3301. doi:10.1039/c4ee01444h

    Article  CAS  Google Scholar 

  • Schonfeld C, Wobbe L, Borgstadt R, Kienast A, Nixon PJ, Kruse O (2004) The nucleus-encoded protein MOC1 is essential for mitochondrial light acclimation in Chlamydomonas reinhardtii. J Biol Chem 279(48):50366–50374. doi:10.1074/jbc.M408477200

    Article  PubMed  CAS  Google Scholar 

  • Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157(4):613–619. doi:10.1016/j.jbiotec.2011.06.019

  • Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc Natl Acad Sci U S A 107(23):10448–10453. doi:10.1073/pnas.1001937107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons TR, Berggren G, Bacchi M, Fontecave M, Artero V (2014) Mimicking hydrogenases: from biomimetics to artificial enzymes. Coord Chem Rev 270:127–150. doi:10.1016/j.ccr.2013.12.018

    Article  CAS  Google Scholar 

  • Steinbeck J, Nikolova D, Weingarten R, Johnson X, Richaud P, Peltier G, Hermann M, Magneschi L, Hippler M (2015) Deletion of proton gradient regulation 5 (PGR5) and PGR5-like 1 (PGRL1) proteins promote sustainable light-driven hydrogen production in Chlamydomonas reinhardtii due to increased PSII activity under sulfur deprivation. Front Plant Sci 6:892. doi:10.3389/fpls.2015.00892

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiebritz MT, Reiher M (2012) Hydrogenases and oxygen. Chem Sci 3(6):1739–1751. doi:10.1039/c2sc01112c

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci U S A 106(41):17331–17336. doi:10.1073/pnas.0905343106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart TS, Gaffron H (1972) The mechanism of hydrogen photoproduction by several algae: 2. The contribution of photosystem II. Planta 106(2):101–112. doi:10.1007/bf00383990

    Article  CAS  PubMed  Google Scholar 

  • Suess DLM, Pham CC, Buerstel I, Swartz JR, Cramer SP, Britt RD (2016) The radical SAM enzyme HydG requires cysteine and a dangler iron for generating an organometallic precursor to the [FeFe]-hydrogenase H-cluster. J Am Chem Soc 138(4):1146–1149. doi:10.1021/jacs.5b12512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun YL, Chen M, Yang HM, Zhang J, Kuang TY, Huang F (2013) Enhanced H2 photoproduction by down-regulation of ferredoxin-NADP+ reductase (FNR) in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy 38(36):16029–16037. doi:10.1016/j.ijhydene.2013.10.011

    Article  CAS  Google Scholar 

  • Surzycki R, Cournac L, Peltiert G, Rochaix J-D (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci U S A 104(44):17548–17553. doi:10.1073/pnas.0704205104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson KD, Ratzloff MW, Mulder DW, Artz JH, Ghose S, Hoffman A, White S, Zadvornyy OA, Broderick JB, Bothner B, King PW, Peters JW (2015) [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. J Am Chem Soc 137(5):1809–1816. doi:10.1021/ja510169s

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 103(2):477–482. doi:10.1073/pnas.0509952103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9(7):1514–1532. doi:10.1074/mcp.M900421-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano JM, Beyly A, Cuine S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23(7):2619–2630. doi:10.1105/tpc.111.086876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34(10):4529–4536. doi:10.1016/j.ijhydene.2008.07.093

    Article  CAS  Google Scholar 

  • Torzillo G, Scoma A, Faraloni C, Giannelli L (2015) Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol 35(4):485–496. doi:10.3109/07388551.2014.900734

    Article  PubMed  CAS  Google Scholar 

  • van Lis R, Baffert C, Coute Y, Nitschke W, Atteia A (2013) Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate: ferredoxin oxidoreductase that functions with FDX1. Plant Physiol 161(1):57–71. doi:10.1104/pp.112.208181

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501. doi:10.1111/j.1574-6976.2001.tb00587.x

    Article  CAS  PubMed  Google Scholar 

  • Volgusheva A, Styring S, Mamedov F (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 110(18):7223–7228. doi:10.1073/pnas.1220645110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volgusheva A, Kukarskikh G, Krendeleva T, Rubin A, Mamedov F (2015) Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv 5(8):5633–5637. doi:10.1039/c4ra12710b

    Article  CAS  Google Scholar 

  • Winkler M, Kawelke S, Happe T (2011) Light driven hydrogen production in protein based semi-artificial systems. Bioresour Technol 102(18):8493–8500. doi:10.1016/j.biortech.2011.05.019

    Article  CAS  PubMed  Google Scholar 

  • Winkler M, Esselborn J, Happe T (2013) Molecular basis of [FeFe]-hydrogenase function: an insight into the complex interplay between protein and catalytic cofactor. Biochim Biophys Acta. doi:10.1016/j.bbabio.2013.03.004

  • Wittenberg G, Sheffler W, Darchi D, Baker D, Noy D (2013) Accelerated electron transport from photosystem I to redox partners by covalently linked ferredoxin. Phys Chem Chem Phys 15(45):19608–19614. doi:10.1039/C3CP53264J

    Article  CAS  PubMed  Google Scholar 

  • Wu SX, Huang R, Xu LL, Yan GY, Wang QX (2010) Improved hydrogen production with expression of hemH and lba genes in chloroplast of Chlamydomonas reinhardtii. J Biotechnol 146(3):120–125. doi:10.1016/j.jbiotec.2010.01.023

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102(3):2610–2616. doi:10.1016/j.biortech.2010.09.123

    Article  CAS  PubMed  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117(1):129–139. doi:10.1104/pp.117.1.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F-Q, Ma W-M, Zhu X-G (2011) Introducing pyruvate oxidase into the chloroplast of Chlamydomonas reinhardtii increases oxygen consumption and promotes hydrogen production. Int J Hydrog Energy 36(17):10648–10654. doi:10.1016/j.ijhydene.2011.05.130

    Article  CAS  Google Scholar 

  • Yacoby I, Pochekailov S, Toporik H, Ghirardi ML, King PW, Zhang S (2011) Photosynthetic electron partitioning between FeFe-hydrogenase and ferredoxin:NADP(+)-oxidoreductase (FNR) enzymes in vitro. Proc Natl Acad Sci U S A 108(23):9396–9401. doi:10.1073/pnas.1103659108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LP, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214(4):552–561. doi:10.1007/s004250100660

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Happe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sawyer, A., Esselborn, J., Winkler, M., Happe, T. (2017). Chlamydomonas: Hydrogenase and Hydrogen Production. In: Hippler, M. (eds) Chlamydomonas: Biotechnology and Biomedicine. Microbiology Monographs, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-66360-9_2

Download citation

Publish with us

Policies and ethics