Skip to main content

Surface Properties of Thermoplastic Starch Materials Reinforced with Natural Fillers

  • Chapter
  • First Online:
Functional Biopolymers

Abstract

The self-association force of water on the surface of a composite polymeric material is a physicochemical process dominated by cohesive forces and van der Waals-type interactions existing below the material surface. Perturbations in the chemical potential of water, brought about by the interaction between it and a polymeric surface, induce compensatory structural changes. Thus, the structure of water on the surface of a composite polymeric material reveals the hydrogen bond interactions taking place beneath it, which are key to understanding the properties of thermoplastic starch (TPS) materials. In the literature, there is a broad consensus based on empirical results that a contact angle (θ) greater than 65° defines a hydrophobic surface. These findings suggest that there are at least two different types of water structures that exist as a response to interactions occurring within the composite polymers. One of these is formed when there is a low density of “Lewis sites”, and the other when there is a high density of “Lewis sites” on the surface of the thermoplastic materials. This second scenario produces the collapse of the water structure, i.e., the collapse of the hydrogen-bonded network. In spite of the physicochemical response of water to the intra- and intermolecular interactions that occur on composite materials, these have not been studied as a means to modify the surface behavior of TPS materials. This could be achieved by incorporating natural fillers that have a plasticizer or crosslinking effect on their structure. In this chapter, we analyze the surface properties of starch-based composite materials as an indirect measure of the interactions that occur within them, mainly as regards plasticizing effects and crosslinking reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu AS, Oliveira M, de Sá A, Rodrigues RM, Cerqueira MA, Vicente AA, Machado AV (2015) Antimicrobial nanostructured starch based films for packaging. Carbohyd Polym 129:127–134

    Article  CAS  Google Scholar 

  • Almasi H, Ghanbarzadeh B, Entezami AA (2010) Physicochemical properties of starch-CMC-nanoclay biodegradable films. Int J Biol Macromol 46:1–5

    Article  CAS  Google Scholar 

  • Andrady AL, Hamid SH, Hu X, Torikai A (1998) Effects of increased solar ultraviolet radiation on materials. J Photochem Photobiol, B 46(1):96–103

    Article  CAS  Google Scholar 

  • Aouada FA, Mattoso LH, Longo E (2013) Enhanced bulk and superficial hydrophobicities of starch-based bionanocomposites by addition of clay. Ind Crops Prod 50:449–455

    Article  CAS  Google Scholar 

  • Averous L, Fringant C, Moro L (2001) Plasticized starch–cellulose interactions in polysaccharide composites. Polymer 42(15):6565–6572

    Article  CAS  Google Scholar 

  • Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41(11):4157–4167

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626

    Article  Google Scholar 

  • Baldwin PM, Adler J, Davies MC, Melia CD (1998) High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci 27(3):255–265

    Article  Google Scholar 

  • Baldwin PM, Melia CD, Davies MC (1997) The surface chemistry of starch granules studied by time-of-flight secondary ion mass spectrometry. J Cereal Sci 26(3):329–346

    Article  CAS  Google Scholar 

  • Bertolini AC (2010) Trends in starch applications. Starches: characterization, properties, and applications. Taylor and Francis Group, LLC, Abingdon, pp 1–20

    Google Scholar 

  • Bertuzzi MA, Vidaurre EC, Armada M, Gottifredi JC (2007) Water vapor permeability of edible starch based films. J Food Eng 80(3):972–978

    Article  CAS  Google Scholar 

  • Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109(6):3804–3810

    Article  CAS  Google Scholar 

  • Carvalho AJF, Curvelo AAS, Gandini A (2005) Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride. Ind Crops Prod 21(3):331–336

    Article  CAS  Google Scholar 

  • Cui H, Hanus R, Kessler MR (2013) Degradation of ROMP-based bio-renewable polymers by UV radiation. Polym Degrad Stab 98(11):2357–2365

    Article  CAS  Google Scholar 

  • Curvelo AAS, De Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohyd Polym 45(2):183–188

    Article  CAS  Google Scholar 

  • Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D et al. (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27(12):1586–1595

    Article  CAS  Google Scholar 

  • Cyras VP, Tolosa Zenklusen MC, Vazquez A (2006) Relationship between structure and properties of modified potato starch biodegradable films. J Appl Polym Sci 101(6):4313–4319

    Article  CAS  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That MT, Vázquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohyd Polym 73(1):55–63

    Google Scholar 

  • Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15(20):3774–3780

    Article  CAS  Google Scholar 

  • de Azeredo HM (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253

    Article  Google Scholar 

  • Du Q, Freysz E, Shen YR (1994a) Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264(5160):826–828

    Article  CAS  Google Scholar 

  • Du Q, Freysz E, Shen YR (1994b) Vibrational spectra of water molecules at quartz/water interfaces. Phys Rev Lett 72(2):238

    Article  CAS  Google Scholar 

  • Du Q, Superfine R, Freysz E, Shen YR (1993) Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett 70(15):2313

    Article  CAS  Google Scholar 

  • Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696

    Article  CAS  Google Scholar 

  • Erbil HY, Demirel AL, Avcı Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611):1377–1380

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  • Flores S, Famá L, Rojas AM, Goyanes S, Gerschenson L (2007) Physical properties of tapioca-starch edible films: influence of filmmaking and potassium sorbate. Food Res Int 40(2):257–265

    Article  CAS  Google Scholar 

  • Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013

    Article  CAS  Google Scholar 

  • Gao W, Dong H, Hou H, Zhang H (2012) Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohyd Polym 88:321–328

    Article  CAS  Google Scholar 

  • García-Tejeda YV, López-González C, Pérez-Orozco JP, Rendón-Villalobos R, Jiménez-Pérez A, Flores-Huicochea E, Solorza-Feria J, Bastida CA (2013) Physicochemical and mechanical properties of extruded laminates from native and oxidized banana starch during storage. LWT Food Sci Technol 54(2):447–455

    Article  Google Scholar 

  • Ghanbarzadeh B, Almasi H, Oleyaei SA (2013) A novel modified starch/carboxymethyl cellulose/montmorillonite bionanocomposite film: structural and physical properties. Int J Food Eng 10:121–130

    Article  Google Scholar 

  • Ghani SWA, Bakar AA, Samsudin SA (2013) Mechanical properties of chitosan modified montmorillonite filled tapioca starch nanocomposite films. Adv Mat Res 686:145–154

    Article  Google Scholar 

  • Gutiérrez MQ, Echeverría I, Ihl M, Bifani V, Mauri AN (2012) Carboxymehtylcellulose-montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohyd Polym 87:1495–1502

    Article  Google Scholar 

  • Gutiérrez TJ, González G (2016) Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food Bioproc Tech 9(11):1812–1824

    Article  Google Scholar 

  • Gutiérrez TJ, González, G (2017) Effect of cross-linking with Aloe vera gel on surface and physicochemical properties of edible films made from plantain flour. Food Biophys 12(1):11–22

    Google Scholar 

  • Gutiérrez TJ, Guzmán R, Medina C, Famá L (2016a) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403

    Article  Google Scholar 

  • Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016b) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocoll 54:234–244

    Article  Google Scholar 

  • Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8

    Article  Google Scholar 

  • Hu G, Chen J, Gao J (2009) Preparation and characteristics of oxidized potato starch films. Carbohyd Polym 76(2):291–298

    Article  CAS  Google Scholar 

  • Huang MF, Yu JG, Ma XF (2004) Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45:7017–7023

    Article  CAS  Google Scholar 

  • Kalichevsky MT, Ring SG (1987) Incompatibility of amylose and amylopectin in aqueous solution. Carbohyd Res 162(2):323–328

    Article  CAS  Google Scholar 

  • Kampeerapappun P, Aht-ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohyd Polym 67(2):155–163

    Article  CAS  Google Scholar 

  • Karbowiak T, Debeaufort F, Champion D, Voilley A (2006) Wetting properties at the surface of iota-carrageenan-based edible films. J Colloid Interface Sci 294(2):400–410

    Article  CAS  Google Scholar 

  • Kim SI, Lee BR, Lim JI, Mun CH, Jung Y, Kim JH, Kim SH (2014) Preparation of topographically modified poly(l-lactic acid)-b-poly(ɛ-caprolactone)-b-poly(l-lactic acid) tri-block copolymer film surfaces and its blood compatibility. Macromol Res 22(11):1229–1237

    Article  CAS  Google Scholar 

  • Lee CY, McCammon JA, Rossky PJ (1984) The structure of liquid water at an extended hydrophobic surface. J Chem Phys 80(9):4448–4455

    Article  CAS  Google Scholar 

  • López OV, Versino F, Villar MA, García MA (2015) Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films. Carbohyd Polym 134:324–332

    Article  Google Scholar 

  • Luna G, Villada H, Velasco R (2009) Fique’s fiber reinforced thermoplasticstarch of cassava: preliminary. Dyna 159:145–151

    CAS  Google Scholar 

  • Ma X, Yu J, Kennedy JF (2005) Studies on the properties of naturalfibers-reinforced thermoplastic starch composites. Carbohyd Polym 62(1):19–24

    Article  CAS  Google Scholar 

  • Martins IMG, Magina SP, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2009) New biocomposites based on thermoplastic starch and bacterial cellulose. Compos Sci Technol 69(13):2163–2168

    Article  CAS  Google Scholar 

  • Medina C, González P, Goyanes S, Bernal C, Famá L (2015) Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Stärke 67(9–10):780–789

    Article  Google Scholar 

  • Medina C, Gutiérrez TJ, Goyanes S, Bernal C, Famá L (2016) Biodegradability and plasticizing effect of yerba mate extract on cassava starch edible films. Carbohyd Polym 151:150–159

    Article  Google Scholar 

  • Miles MJ, Morris VJ, Orford PD, Ring SG (1985a) The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohyd Res 135(2):271–281

    Article  CAS  Google Scholar 

  • Miles MJ, Morris VJ, Ring SG (1985b) Gelation of amylose. Carbohydr Res 135(2):257–269

    Article  CAS  Google Scholar 

  • Miculescu M, Thakur VK, Miculescu F, Voicu SI (2016) Graphene-based polymer nanocomposite membranes: a review. Polym Adv Technol 27(7):844–859

    Article  CAS  Google Scholar 

  • Michalska-Pożoga I, Tomkowski R, Rydzkowski T, Thakur VK (2016) Towards the usage of image analysis technique to measure particles size and composition in wood-polymer composites. Ind Crops Prod 92:149–156

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  CAS  Google Scholar 

  • Nafchi AM, Tabatabaei RH, Pashania B, Rajabi HZ, Karim AA (2013) Effects of ascorbic acid and sugars on solubility, thermal, and mechanical properties of egg white protein gels. Int J Biol Macromol 62:397–404

    Article  Google Scholar 

  • Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem 122(1):161–166

    Article  CAS  Google Scholar 

  • Ollier R, Lanfranconi M, Alvarez V (2014) Chemical modifications of natural clays: strategies to improve the polymeric matrix/clay compatibility. In: Wythers Maryann C (ed) Advances in materials science research. Nova Science Publishers, Hauppauge, NY, pp 55–82

    Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  • Pappu A, Saxena M, Thakur VK, Sharma A, Haque R (2016) Facile extraction, processing and characterization of biorenewable sisal fibers for multifunctional applications. J Macromol Sci Part A 53(7):424–432

    Article  CAS  Google Scholar 

  • Peeling J, Clark DT, Evans IM, Boulter D (1976) Evaluation of the ESCA technique as a screening method for the estimation of protein content and quality in seed meals. J Sci Food Agric 27(4):331–340

    Article  CAS  Google Scholar 

  • Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocoll 30(2):681–690

    Article  CAS  Google Scholar 

  • Phan TD, Debeaufort F, Luu D, Voilley A (2005) Functional properties of edible agar-based and starch-based films for food quality preservation. J Agric Food Chem 53(4):973–981

    Article  CAS  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539

    Article  CAS  Google Scholar 

  • Reyes LR (2013) Caracterización de dispersiones filmogénicas a base de almidón de maíz y ácido oleico en nanoemulsión con capacidad de formación de recubrimientos comestibles activos. Tesis de Maestría. Facultad de Química. Universidad Autónoma de Querétaro, México

    Google Scholar 

  • Rindlav-Westling Å, Gatenholm P (2003) Surface composition and morphology of starch, amylose, and amylopectin films. Biomacromol 4(1):166–172

    Article  CAS  Google Scholar 

  • Rindlav-Westling Å, Stading M, Gatenholm P (2002) Crystallinity and morphology in films of starch, amylose and amylopectin blends. Biomacromol 3(1):84–91

    Article  CAS  Google Scholar 

  • Russell PL, Gough BM, Greenwell P, Fowler A, Munro HS (1987) A study by ESCA of the surface of native and chlorine-treated wheat starch granules: the effects of various surface treatments. J Cereal Sci 5(1):83–100

    Article  CAS  Google Scholar 

  • Shogren RL, Lawton JW, Tiefenbacher KF, Chen L (1998) Starch–poly (vinyl alcohol) foamed articles prepared by a baking process. J Appl Polym Sci 68(13):2129–2140

    Article  CAS  Google Scholar 

  • Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24(8):770–775

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Synthesis and characterization of Grewia optiva fiber-reinforced PF-based composites. Int J Polym Mater Polym Biomater 57(12):1059–1074

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. J Chem 5(S1):1055–1062

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008c) Fabrication and study of lignocellulosic hibiscus sabdariffa fiber reinforced polymer composites. BioResources 3(4):1173–1186

    Google Scholar 

  • Singha AS, Thakur VK (2009a) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48(4):482–487

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009b) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6(1):71–76

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2009c) Mechanical, thermal and morphological properties of grewia optiva fiber/polymer matrix composites. Polym Plast Technol Eng 48(2):201–208

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2009d) Study of mechanical properties of urea-formaldehyde thermosets reinforced by pine needle powder. BioResources 4(1):292–308

    CAS  Google Scholar 

  • Slavutsky AM, Bertuzzi MA, Armada M (2012) Water barrier properties of starch-clay nanocomposite films. Braz J Food Technol 15:208–218

    Google Scholar 

  • Spiridon I, Teacă CA, Bodîrlău R, Bercea M (2013) Behavior of cellulose reinforced cross-linked starch composite films made with tartaric acid modified starch microparticles. J Polym Environ 21(2):431–440

    Article  CAS  Google Scholar 

  • Stading M, Hermansson AM, Gatenholm P (1998) Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohyd Polym 36(2):217–224

    Google Scholar 

  • Stading M, Rindlav-Westling Å, Gatenholm P (2001) Humidity-induced structural transitions in amylose and amylopectin films. Carbohyd Polym 45(3):209–217

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013a) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013b) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013c) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32(S1):E741–E748

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18(7):495–503

    Article  CAS  Google Scholar 

  • Trache D, Hazwan Hussin M, Mohamad Haafiz MK, Kumar Thakur V (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  Google Scholar 

  • Varma AJ (1984) Photoelectron spectroscopic studies of cellulose, starch and their oxidation products, in powdered form. Carbohyd Polym 4(6):473–479

    Article  CAS  Google Scholar 

  • Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4(3):1765–1774

    Article  CAS  Google Scholar 

  • Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface 74(1):69–117

    Article  CAS  Google Scholar 

  • Wang B, Mireles K, Rock M, Li Y, Thakur VK, Gao D, Kessler MR (2016) Synthesis and preparation of bio-based ROMP thermosets from functionalized renewable isosorbide derivative. Macromol Chem Phys 217(7):871–879

    Article  CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994

    Article  CAS  Google Scholar 

  • Wilpiszewska K, Antosik AK, Spychaj T (2015) Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohyd Polym 128:82–89

    Article  CAS  Google Scholar 

  • Wong DWS, Gastineau FA, Gregorski KS, Tillin SJ, Pavlath AE (1992) Chitosan-lipid films: microstructure and surface energy. J Agric Food Chem 40:540–544

    Article  CAS  Google Scholar 

  • Xia X, Hu Z, Marquez M (2005) Physically bonded nanoparticle networks: a novel drug delivery system. J Control Release 103(1):21–30

    Article  CAS  Google Scholar 

  • Yanli W, Wenyuan G, Xia L (2009) Carboxymethyl Chinese yam starch: synthesis, characterization, and influence of reaction parameters. Carbohyd Res 344:1764–1769

    Article  Google Scholar 

  • Yuan Y, Lee TR (2013) Contact angle and wetting properties. In: Bracco G, Holst B (eds) Surface science techniques. Springer, Berlin, pp 3–34

    Chapter  Google Scholar 

  • Zhou J, Ma Y, Ren L, Tong J, Liu Z, Xie L (2009) Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohyd Polym 76(4):632–638

    Article  CAS  Google Scholar 

  • Zhou J, Zhang J, Ma Y, Tong J (2008) Surface photo-crosslinking of corn starch sheets. Carbohyd Polym 74(3):405–410

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Council of Scientific and Technical Research (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417) and National University of Mar del Plata (UNMdP) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomy J. Gutiérrez or Vera A. Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gutiérrez, T.J., Ollier, R., Alvarez, V.A. (2018). Surface Properties of Thermoplastic Starch Materials Reinforced with Natural Fillers. In: Thakur, V., Thakur, M. (eds) Functional Biopolymers. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-66417-0_5

Download citation

Publish with us

Policies and ethics