Skip to main content

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

Artificial neural networks are perhaps the most common method amongst intelligent methods in geophysics and are becoming increasingly popular. Because they are universal approximations, these tools can approximate any continuous function with any arbitrary precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The function f(x) = A(x4 − 3x2); A > 0; is the Mexican Hat function. It has the appearance of a Mexican Hat, hence its name. It is symmetric with respect to the y-axis. Its two minima produce two stable points when viewed as a potential function in physics and engineering.

References

  • Albora A. M., Özmen A., Ucan O. N., 2001, Residual Separation of Magnetic Fields Using a Cellular Neural Network Approach, Pure and Applied Geophysics, 158(9),1797–818. https://doi.org/10.1007/pl00001244.

  • Frost J., 2015, The Danger of Overfitting Regression Models, 3 September, http://blog.minitab.com/blog/adventures-in-statistics-2/the-danger-of-overfitting-regression-models.

  • Lawrence J., 1994, Introduction to Neural Networks: Design, Theory, and Applications, California Scientific Software, ISBN1883157005, 9781883157005.

    Google Scholar 

  • Alarifi Nassir A. S.N., Alarifi N.S.N., Al-Humidan S., 2012, Earthquakes magnitude prediction using artificial neural network in northern Red Sea Area, Journal of king Saud University science, 2012, Vol. 24 (4): 301–313 https://doi.org/10.1016/j.jksus.2011.05.002.

  • Azoff, E.M., 1994, Neural Network time series forecasting of financial markets, Chi Chester: John Wiley and Sons.

    Google Scholar 

  • Beale R. and Jackson T., 1990, Neural Computing: An introduction, IOP Publishing Ltd, ISBN 0-85274-262-2.

    Google Scholar 

  • Bohlooli, A. and Jamshidi, K., 2011, “A GPS-Free Method for Vehicle Future Movement Directions Prediction using SOM for VANET”, Applied Intelligence, 36(3), 685–697.

    Google Scholar 

  • Calderón-Macías, C., Sen M.K., and Stoffa P.L., 1998, Automatic NMO correction and velocity estimation by a feedforward neural network, Geophysics 63(5), 1696–1707, https://doi.org/10.1190/1.1444465.

  • Chester, D.L., 1990. Why two hidden layers are better than one? Proceedings of the International Joint Conference on Neural Networks, 1265–1268.

    Google Scholar 

  • Clifford A. and Aminzadeh F. 2011, Gas detection from absorption attributes and amplitude versus offset with artificial neural networks in grand by field, SEG expanded abstracts, Vol. 30, A Vol on New methods & case studies.

    Google Scholar 

  • Cybenko, G., 1989, Approximations by superpositions of sigmoidal functions, Mathematics of Control, Signals, and Systems, 2 (4), 303–314.

    Google Scholar 

  • Diersen S., En-jui Lee, Diana Spears, Po chen, Liqiang Wang, 2011, Classification of seismic windows using artificial neural networks, International Conference on Computational Science, ICCS 2011, Procedia Computer Science 4 (2011) 1572–1581.

    Google Scholar 

  • Dysart P.S., J.J. Pulli, 1990, Regional seismic event classification at the noress array: seismological measurements and the use of trained neural networks, Bulletin of the seismological society of America 80 (68) (1990), 1910–1933.

    Google Scholar 

  • Elawadi, E., A. Salem, and K. Ushijima, 2001, Detection of cavities and tunnels from gravity data using a neural network, Exploration Geophys. 32, 4, 204–208, https://doi.org/10.1071/eg01204.

  • El-Qady G. and Ushijima K., 2001, Inversion of DC resistivity data using neural networks, Geophysical Prospecting 49(4), 417 – 430. July 2001, https://doi.org/10.1046/j.1365-2478.2001.00267.x.

  • Eshaghzadeh A., Hajian A., 2018, “2D Inverse modeling of residual gravity anomalies from simple geometric shapes using modular feed-forward Neural Network”, Annals of Geophysics, 61(1), SE115(1-5), https://doi.org/10.4401/ag-7540

  • Fahlman S. E. and C. Lebiere, 1990, The cascade-correlation learning architecture, CMU-CS-90-100 School of Computer Science, Carnegie Mellon University Publisher, 524–532.

    Google Scholar 

  • Fernando J.S., Silva Dias, Valéria C.F. Barbosa and João B.C. Silva, 2010, Identification of earthquake phases in increased noise level conditions, Geophysical Research Abstracts, EGU 2010, 24–34. ftp.it.murdoch.edu.au/units/ICT482/Notes/Kohonen%20net.doc.

    Google Scholar 

  • Fu, L. Y., 1999, A neuron filtering model and its neural network for space and time-varying signal processing: 3rd International Conference on Cognitive and Neural Systems, Boston University, Paper B03.

    Google Scholar 

  • Geman, S., Bienenstock, E., and Doursat, R., 1992, Neural networks and the bias/variance dilemma: Neural Comp., 4, 1–58.

    Google Scholar 

  • Grêt A.A., Klingelé E.E., and Kahle H.-G., 2000, Application of artificial neural networks for gravity interpretation in two dimensions: a test study, Bollettino Digeofisica teorica Edapplicata, 41(1), 1–20.

    Google Scholar 

  • Gret, A. A. and Klingele, E. E., 1998, Application of Artificial Neural Networks for Gravity Interpretation in Two Dimension, Report No.279, Institute of Geodesy and Photogrammetery, Swiss Federal Institute of Technology, Zurich.

    Google Scholar 

  • Günaydın, K. and Günaydın A., 2008, Peak ground acceleration prediction by artificial neural networks for Northwestern Turkey, Math. Probl. Eng. 2008, https://doi.org/10.1155/2008/919420.

  • Hajian A., Styles P., Zomorrodian H., 2011b, “Depth Estimation of Cavities from microgravity Data through Multi Adaptive Neuro Fuzzy Interference System”, Near Surface 2011 – 17th European Meeting of Environmental and Engineering Geophysics, Leicester, UK.

    Google Scholar 

  • Hajian A., Zomorrodian H., Styles P., 2012, Simultaneous Estimation of Shape Factor and Depth of Subsurface Cavities from Residual Gravity Anomalies using Feed-Forward Back-Propagation Neural Networks, Acta Geophysica, 60(4), 317–336. https://doi.org/10.2478/s11600-012-0049-1.

  • Hajian A., 2008, Depth estimation of gravity anomalies by Hopfield Network, proceeding of 5th Annual meeting, AOGS: Asia Oceania Geosciences Society Busan, Korea, 16–20 Jun.

    Google Scholar 

  • Hajian A., Ardestani, E. V. and Lucas C., 2011a, Depth estimation of gravity anomalies using Hopfield Neural Networks, Journal of the Earth & Space Physics, 37(2), 1–9.

    Google Scholar 

  • Hajian A., M Shirazi, 2015, Depth estimation of salt domes using gravity data through General Regression Neural Networks, case study: Mors Salt dome Denmark, Journal of the Earth and Space Physics, 41(3), 425–438(published in Persian Language with English abstract).

    Google Scholar 

  • Hastie T., Tibshirani R., Friedman J., 2009, The Elements of Statistical Learning Data Mining, Inference, and Prediction, Springer Series in Statistics, Second Edition, Springer.

    Google Scholar 

  • Haykin S., 1994, Neural Networks: A Comprehensive Foundation, 1st Edition, Prentice Hall PTR Upper Saddle River, NJ, USA ©1994, ISBN: 0023527617.

    Google Scholar 

  • Haykin, S., 1999, Neural Networks: A Comprehensive Foundation, 2nd ed., Prentice-Hall Inc., Englewood Cliffs.

    Google Scholar 

  • Hecht-Nelson, R., 1987, Kolmogorov’s mapping neural network existence theorem, Proc., 1st IEEE Annual Conf. on Neural Networks, IEEE, Piscataway, NJ.

    Google Scholar 

  • Hopfield J.J. and Tank DW., 1985, Neural computation of decisions in optimization problems, Biological Cybernetics, 52, 141–152.

    Google Scholar 

  • Hopfield, J. J., 1984, Neural networks and physical systems with emergent collective computational abilities, Proceeding of the National Academy of Sciences, U.S.A.,79, 2554–2558. http://www.solver.com/partition-data.

  • Huang Z. and Mark A. Williamson, 1994, Geological pattern recognition and modeling with a general regression neural network, Canadian journal of Exploration geophysics, 30(1), 60–68.

    Google Scholar 

  • Kaftan, I., and Salk, M., 2009, Determination Of Structure Parameters On Gravity Method By Using Radial Basis Functions Networks Case Study : Seferihisar Geothermal Area (Western Turkey). Society of Exploration Geophysicists. SEG Annual Meeting, 25–30 October, Houston, Texas.

    Google Scholar 

  • Kröse and Smagt, 1996, An introduction to Neural Networks, Eighth edition, November 1996, The University of Amsterdam.

    Google Scholar 

  • Kumar K., Janak I. and Konno M., 2002, Cross-borehole geological interpretation model based on a fuzzy neural network and geotomography, Geophysics, 67(4), 1177–1183, Technical papers, seismic interpretation (p-wave); https://doi.org/10.1190/1.1500379.

  • Langer, H., Nunnari G., and Occhipinti L., 1996, Estimation of seismic waveform governing parameters with neural networks, Journal of Geophys. Res. 101, B9, 20109–20118, https://doi.org/10.1029/96jb00948.

  • Lawrence, J. and Fredrickson, J., 1998, Brain Maker User’s Guide and Reference Manual, 7th Ed., Nevada City, CA: California Scientific Software.

    Google Scholar 

  • Levenberg, K., 1944, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2, 164–168.

    Google Scholar 

  • Li, Y. and Oldenburg, D. W., 1996, 3D inversion of magnetic data, Geophysics, 61, 394–408. http://stats.stackexchange.com/questions/19048/what-is-the-difference-between-test-set-and-validation-set.

  • Marquardt, D.W., 1963, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11, 2, 431–441, https://doi.org/10.1137/0111030.

  • McCormack, M.D., Zaucha D.E., and Dushek D.W., 1993, First-break refraction event picking and seismic data trace editing using neural networks, Geophysics 58, 1, 67–78, DOI:0.1190/1.1443352.

    Google Scholar 

  • Mirchandani, G., Cao, W., 1989, On hidden nodes for neural nets. IEEE Trans. Circuits Syst., 36, 661–664.

    Google Scholar 

  • Moya A. and Irikura K., 2010, Inversion of a velocity model using artificial neural networks, Computers & Geosciences, 36, 1474–1483.

    Google Scholar 

  • Mukat L. Sharma and Manoj K. Arora, 2005, Prediction of seismicity cycles in the Himalayas using artificial neural network, Acta Geophysica Polonica, 53(3), 299–309.

    Google Scholar 

  • Murat, M.E., and A.J. Rudman, 1992, Automated first arrival picking: A neural network approach, Geophysical Prospecting, 40(6), 587–604, https://doi.org/10.1111/j.1365-2478.1992.tb00543.x.

  • Negnevitsky M., 2001 Artificial Intelligence Systems: A Guide to Intelligent Systems, 3rd Edition, Pearson Education Limited, Harlow.

    Google Scholar 

  • Nigrin A., 1993, Neural networks for pattern recognition, Cambridge MA: The MIT Press.

    Google Scholar 

  • Orr J.L., 1996, Introduction to Radial Basis Function networks, Centre for Cognitive Science University of Edinburgh; source: www.cc.gatech.edu/~isbell/tutorials/rbf-intro.pdf.

  • Osman O., Albora A.M. and Ucan O.N., 2007, Forward modeling with forced Neural Network for Gravity Anomaly Profile, Mathematical Geology, 39, 593–605. https://doi.org/10.1016/j.coastaleng.2007.01.001.

  • Osman O., Albora A.M. and Ucan O.N., 2007, Forward modeling with forced Neural Network for Gravity Anomaly Profile, Mathematical Geology 39, 593–605. https://doi.org/10.1007/s11004-007-9114-8.

  • Park, H. I., 2011, Study for Application of Artificial Neural Networks in Geotechnical Problems. INTECH Open Access Publisher, ISBN 9533071885, 9789533071886.

    Google Scholar 

  • Petrovay K.,2010, Solar Cycle Prediction, 2010, Living Rev. Solar Phys. 7, http://www.livingreviews.org/lrsp-2010-6, https://doi.org/10.12942/lrsp-2010-6.

  • Poulton, M.M., B.K. Sternberg, and C.E. Glass, 1992, Location of subsurface targets in geophysical data using neural networks, Geophysics 57, 12, 1534–1544, https://doi.org/10.1190/1.1443221.

  • Reyes J., Morales-Esteban A., Martínez-Álvarez F., 2013, Neural networks to predict earthquakes in Chile, Applied Soft Computing 13,1314–1328.

    Google Scholar 

  • Richard M.P. and Lippmann R.P, neural network classifiers estimate Bayesian a posteriori probabilities, Neural computation, 3 (4), 461–483, 1991.

    Google Scholar 

  • Roth, G., and A. Tarantola, 1994, Neural networks and inversion of seismic data, J. Geophys. Res. 99, B4, 6753–6768, https://doi.org/10.1029/93jb01563.

  • Rumelhart, D.E., G.E. Hinton, and R.J. Williams, 1986, learning internal representation by error back propagation. In: D.E. Rumelhart and J.L. Mc Clelland (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol. 1. Foundations, MIT Press, Cambridge, USA, 318–362.

    Google Scholar 

  • Salem A. and Ushijima K., Jeffrey Gamey T., Ravat D., 2001, Automatic detection of UXO from airborne magnetic data using a neural network, Subsurface Sensing Technologies and Applications Vol. 2, No. 3, 191–213.

    Google Scholar 

  • Scales, J. A., and Snieder, R., 1998, What is noise?, Geophysics, 63, 1122–1124.

    Google Scholar 

  • Scarpetta S., Giudicepietro F., Ezin E.C., Petrosino S., Del Pezzo E., Martini M., and Marinaro M., 2005, Automatic Classification of Seismic Signals at Mt. Vesuvius Volcano, Italy, Using Neural Networks, Bulletin of the Seismological Society of America, 95(1), 185–196, https://doi.org/10.1785/0120030075.

  • Schalkoff R. J., 2011, Artificial Neural Networks, Tata McGraw-Hill, “Neural Computing”.

    Google Scholar 

  • Specht D. F., 1991 A general regression neural network, IEEE Transactions on Neural Networks, 2(6), 568–576, November 1991, https://doi.org/10.1109/72.97934.

  • Specht D.F., 1990, Probabilistic neural networks, Neural Networks, 3(1), 109–118, https://doi.org/10.1016/0893-6080(90)90049-q.

  • Styles P. and Hajian A., 2012, Generalized Regression Neural Networks for Cavities Depth Estimation using Microgravity Data, Case Study: Kalgorlie Gold, Near Surface Geoscience – 18th European Meeting of Environmental and Engineering Geophysics, DOI: https://doi.org/10.3997/2214-4609.20143479.

  • Styles P., 2012, Environmental Geophysics: Everything You Ever Wanted (needed!) to Know But Were Afraid to Ask, EAGE Publications BV, ISBN 10: 9073834333 - ISBN 13: 9789073834330.

    Google Scholar 

  • Swingler K., 1996, Applying neural networks, A practical guide; 3rd edition, Morgan Kaufmann, ISBN-13: 978-0126791709, ISBN-10: 0126791708.

    Google Scholar 

  • Tank, D. W. and Hopfield, J. J., 1986, Simple neural network optimization networks: An A/D converter, signal decision circuit, and a linear programming circuitries Transaction on Circuits and Systems, 33, 535–541.

    Google Scholar 

  • Turhan Taner M., 1995, Neural networks and computation of neural networks and biases by the generalized delta rule and beck-propagation of errors, 1995 Proceeding of IEEE, Special Issue on Neural networks, Neural networks and their supervised learning, 1–11.

    Google Scholar 

  • Uwamahoro J., McKinnell, Lee-Anne, Cilliers, Pierre. J., 2009, Forecasting solar cycle 24 using neural networks, Journal of Atmospheric and Solar-Terrestrial Physics, 71(5), 569–57.

    Google Scholar 

  • Van der Baan, M., and Jutten C., 2000, Neural networks in geophysical applications, Geophysics 65(4), 1032–1047, https://doi.org/10.1190/1.1444797.

  • Wang, L. X. and Mendel, J. M., 1992, Adaptive minimum prediction-error deconvolution and source wavelet estimation using Hopfield neural networks, Geophysics, 57, 670–679.

    Google Scholar 

  • Widrow B., 1962, Generalization and Information Storage in Networks of Adaline ‘Neurons’, in Self-Organizing Systems, symposium proceedings, M.C. Yovitz, G.T. Jacobi, and G. Goldstein, eds., 435–461, Spartan Books, Washington, DC.

    Google Scholar 

  • Zhang, Y., and K.V. Paulson, 1997, Magnetotelluric inversion using regularized Hopfield neural networks, Geophys. Prospect. 45(5), 725–743, https://doi.org/10.1046/j.1365-2478.1997.660299.x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Hajian .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajian, A., Styles, P. (2018). Artificial Neural Networks. In: Application of Soft Computing and Intelligent Methods in Geophysics. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-66532-0_1

Download citation

Publish with us

Policies and ethics