Skip to main content

Anti-Resorptive Therapy

  • Chapter
  • First Online:
Fragility Fractures of the Pelvis
  • 807 Accesses

Abstract

The goal of medical management of osteoporosis is to reduce fracture risk, preferably at all skeletal sites. The two approaches to treatment of osteoporosis are decreasing bone resorption and increasing bone formation. Currently available anti-resorptive therapies include calcium plus vitamin D, selective estrogen receptor modulators, hormone replacement therapy, bisphosphonates, RANKL antagonist denosumab, and strontium ranelate. Anti-resorptive therapy may be started in patients with a prior fragility fracture or in patients with a T-score of less than −2.5. Maintaining an adequate calcium and vitamin D intake is a standard part of the treatment of osteoporosis. Calcium is required for the bone formation phase of bone remodeling, while vitamin D is necessary for calcium absorption from the intestine. Estrogen deficiency is the most recognized risk factor for the development of osteoporosis. Hormone replacement therapy is no longer recommended as a first line therapy for the treatment of prevention of osteoporosis. Prolonged use of hormone replacement therapy, especially in elderly women, increases the risk of breast cancer, thromboembolic disease, and cerebrovascular accidents. Selective estrogen receptor modulators bind to estrogen receptors and act as agonists to decrease bone resorption and normalize bone turnover. Selective estrogen receptor modulators are predominantly prescribed to women with vertebral osteoporosis. Bisphosphonates are anti-resorptive agents which act via the inhibition of osteoclasts, leading to reduced bone turnover, increased bone mass, and improved mineralization. They are generally considered first line agents in the treatment of osteoporosis. The fracture risk reduction in postmenopausal women treated with bisphosphonates has been well documented. The most frequent complications seen are GI disturbances. Osteonecrosis of the jaw is a rare complication. Atypical subtrochanteric proximal femur fractures have also been reported in patients who have received prolonged alendronate treatment. Denosumab is the first biologic agent for the treatment of osteoporosis. Denosumab is a monoclonal antibody that binds to and neutralizes the activity of RANKL, thereby inhibiting osteoclastogenesis. Its effectiveness and biannual administration make it a promising anti-resorptive agent. Strontium ranelate is a newer treatment for postmenopausal osteoporosis, which reduces both the risk of vertebral as well as non-vertebral fractures. It is the first medication that simultaneously increases bone formation as well as decreases bone resorption. There is a great interest and clinical need for developing new therapeutic targets for the treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vestergaard P. Anti-resorptive therapy for the prevention of postmenopausal osteoporosis: when should treatment begin? Treat Endocrinol. 2005;4(5):263–77.

    Article  PubMed  Google Scholar 

  2. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med. 1992;327:1637–42.

    Article  CAS  PubMed  Google Scholar 

  3. Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337:670–6.

    Article  CAS  PubMed  Google Scholar 

  4. The RECORD Trial group. Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomized Evaluation of Calcium or vitamin D, RECORD): a randomized placebo-controlled trial. Lancet. 2005;365:1621–8.

    Article  Google Scholar 

  5. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354:669–83.

    Article  CAS  PubMed  Google Scholar 

  6. Prince RL, Devine A, Dhaliwal SS, Dick IM. Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double-blind, placebo-controlled trial in elderly women. Arch Intern Med. 2006;166:869–75.

    Article  CAS  PubMed  Google Scholar 

  7. Tang BMP, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370:657–66.

    Article  CAS  PubMed  Google Scholar 

  8. Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 2005;293:2257–64.

    Article  CAS  PubMed  Google Scholar 

  9. Shea B, Well G, Cranney A, et al. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev. 2002;23:552–9.

    Article  CAS  PubMed  Google Scholar 

  10. Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92:1415–23.

    Article  CAS  PubMed  Google Scholar 

  11. Bischoff-Ferrari HA, Dietrich T, Orav EJ, Dawson-Hughes B. Positive association between 25-hydroxy vitamin D levels and bone mineral density: A population-based study of younger and older adults. Am J Med. 2004;116:634–9.

    Article  CAS  PubMed  Google Scholar 

  12. Writing Group for the PEPI. Effects of hormone therapy on bone mineral density: results from the postmenopausal estrogen/progestin interventions. JAMA. 1996;276:1389–96.

    Article  Google Scholar 

  13. Bashir A, Mak YT, Sankaralingam S, Cheung J, McGowan NW, Grigoriadis AE, Fogelman I, Hampson G. Changes in RANKL/OPG/RANK gene expression in peripheral mononuclear cells following treatment with estrogen or raloxifene. Steroids. 2005;70(13):847–55.

    Article  CAS  PubMed  Google Scholar 

  14. Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets. 2010;14(9):923–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rozenberg S, Vandromme J, Kroll M, Pastijn A, Degueldre M. Osteoporosis prevention with sex hormone replacement therapy. Int J Fertil Menopausal Stud. 1994;39:262–71.

    CAS  PubMed  Google Scholar 

  16. Paganini-Hill A. The risks and benefits of estrogen replacement therapy: leisure world. Int J Fertil Menopausal Stud. 1995;40(Suppl1):54–62.

    PubMed  Google Scholar 

  17. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanik ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  CAS  PubMed  Google Scholar 

  18. Dutertre M, Smith CL. Molecular mechanisms of selective estrogen receptor modulator (SERM) action. JPET. 2000;295:431–7.

    CAS  Google Scholar 

  19. Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3 year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282(7):637–45.

    Article  CAS  PubMed  Google Scholar 

  20. Delmas PD, Ensrud KE, Adachi JD, et al. Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab. 2002;87(8):3609–17.

    Article  CAS  PubMed  Google Scholar 

  21. Qu Y, Wong M, Thiebaud D, Stock JL. The effect of raloxifene therapy on the risk of new clinical vertebral fractures at three and six months: a secondary analysis of the MORE trial. Curr Med Res Opin. 2005;21(12):1955–9.

    Article  CAS  PubMed  Google Scholar 

  22. Seeman E, Crans GG, Diez-Perez A, Pinette KV, Delmas PD. Anti-vertebral fracture efficacy of raloxifene: a meta-analysis. Osteoporos Int. 2006;17:313–6.

    Article  PubMed  Google Scholar 

  23. Barrett-Connor E, Mosca L, Collins P, Geiger MJ, Grady D, Kornitzer M, McNabb MA, Wenger NK. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N Engl J Med. 2006;355:125–37.

    Article  CAS  PubMed  Google Scholar 

  24. Reszka AA, Rodan GA. Bisphosphonate mechanism of action. Curr Rheumatol Rep. 2003;5:65–74.

    Article  PubMed  Google Scholar 

  25. Russell RGG, Watts NB, Ebetino FH, Rogers MJ. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19:733–59.

    Article  CAS  PubMed  Google Scholar 

  26. van Beek E, Cohen L, Leroy I, Ebetino F, Löwik C. Papapoulos. Differentiating the mechanisms of antiresorptive action of nitrogen containing bisphosphonates. Bone. 2003;33(5):805–11.

    Article  PubMed  Google Scholar 

  27. Karpf DB, Shapiro DR, Seeman E, Ensrud KE, Johnston CC Jr, Adami S, Harris ST, Santora AC 2nd, Hirsch LJ, Oppenheimer L, Thompson D. Prevention of nonvertebral fractures by alendronate. A meta-analysis. Alendronate osteoporosis treatment study groups. JAMA. 1997;277:1159–64.

    Article  CAS  PubMed  Google Scholar 

  28. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, Chesnut CH 3rd, Brown J, Eriksen EF, Hoseyni MS, Axelrod DW, Miller PD. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA. 1999;282:1344–52.

    Article  CAS  PubMed  Google Scholar 

  29. Chesnut IC, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004;19:1241–9.

    Article  CAS  PubMed  Google Scholar 

  30. Cranney A, Wells G, Willan A, Griffith L, Zytaruk N, Robinson V, Black D, Adachi J, Shea B, Tugwell P, Guyatt G. Meta-analyses of therapies for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev. 2002;23:508–16.

    Article  CAS  PubMed  Google Scholar 

  31. Weycker D, Macarios D, Edelsberg J, Oster G. Compliance with drug therapy for postmenopausal osteoporosis. Osteoporos Int. 2006;17:1645–52.

    Article  CAS  PubMed  Google Scholar 

  32. Khan AA, Sandor GK, Dore E, Morrison AD, Alsahli M, Amin F, Peters E, Hanley DA, Chaudry SR, Lentle B, Dempster DW, Glorieux FH, Neville AJ, Talwar RM, Clokie CM, Mardini MA, Paul T, Khosla S, Josse RG, Sutherland S, Lam DK, Carmichael RP, Blanas N, Kendler D, Petak S, Ste-Marie LG, Brown J, Evans AW, Rios L, Compston JE. Bisphosphonate associated osteonecrosis of the jaw. J Rheumatol. 2009;36:478–90.

    Article  PubMed  Google Scholar 

  33. Lenart BA, Lorich DG, Lane JM. Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. New Engl J Med. 2008;358:1304–6.

    Article  CAS  PubMed  Google Scholar 

  34. Schneider JP. Bisphosphonates and low-impact femoral fractures: current evidence on alendronate-fracture risk. Geriatrics. 2009;64:18–23.

    PubMed  Google Scholar 

  35. Neviaser AS, Lane JM, Lenart BA, Edobor-Osula F, Lorich DG. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:346–50.

    Article  PubMed  Google Scholar 

  36. Bock O, Boerst H, Thomasius FE, Denger C, Stephan-Oelkers M, Valentine SM, et al. Common musculoskeletal adverse effects of oral treatment with once weekly alendronate and risedronate in patients with osteoporosis and ways for their prevention. J Musculoskelet Neuronal Interact. 2007;7:144–8.

    CAS  PubMed  Google Scholar 

  37. Abdallah BM, Stilgren LS, Nissen N, et al. Increased RANKL/OPG mRNA ratio in iliac bone biopsies from women with hip fractures. Calcif Tissue Int. 2005;76:90–7.

    Article  CAS  PubMed  Google Scholar 

  38. Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanism of action and effects. Bone. 2011;48:677–92.

    Article  CAS  PubMed  Google Scholar 

  39. Brown JP, Prince RL, Deal C, Recker RR, Kiel DP, de Gregorio LH, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res. 2009;24:153–61.

    Article  CAS  PubMed  Google Scholar 

  40. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, FREEDOM Trial, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

  41. Austin M, Yang YC, Vittinghoff E, Adami S, Boonen S, Bauer DC, et al. Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J Bone Miner Res. 2012;27:687–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simon JA, Recknor C, Moffett AH, Adachi JB, Franek E, Lewiecki EM, et al. Impact of denosumab on the peripheral skeleton of postmenopausal women with osteoporosis: bone density, mass, and strength of the radius, and wrist fracture. Menopause. 2012;20:130–7.

    Google Scholar 

  43. Papapoulos S, Chapurlat R, Libanati C, Brandi ML, Brown JP, Czerwinski E, et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: results from the first two years of the FREEDOM extension. J Bone Miner Res. 2012;27:694–701.

    Article  CAS  PubMed  Google Scholar 

  44. Bone HG, Chapurlat R, Brandi ML, Brown JP, Czerwinski E, Krieg MA, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013;98:4483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McClung MR, Boonen S, Torring O, Roux C, Rizzoli R, Bone HG, et al. Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res. 2012;27:211–8.

    Article  CAS  PubMed  Google Scholar 

  46. Jamal SA, Ljunggren O, Stehman-Breen C, Cummings SR, McClung MR, Goemaere S, et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011;26:1829–35.

    Article  CAS  PubMed  Google Scholar 

  47. Reginster JY, Malaise O, Neuprez A, Bruyere O. Strontium ranelate in the prevention of osteoporotic fractures. Int J Clin Pract. 2007;61:324–8.

    Article  CAS  PubMed  Google Scholar 

  48. Marie PJ. Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol. 2006;18(Suppl 1):S11–5.

    Article  PubMed  Google Scholar 

  49. Recker RR, Weinstein RS, Chesnut CH III, Schimmer RC, Mahoney P, Hughes C, et al. Histomorphometric evaluation of daily and intermittent oral ibandronate in women with postmenopausal osteoporosis: results from the BONE study. Osteoporos Int. 2004;15:231–7.

    Article  CAS  PubMed  Google Scholar 

  50. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350:459–68.

    Article  CAS  PubMed  Google Scholar 

  51. Marie PJ, Hott M, Modrowski D, et al. An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res. 1993;8:607–15.

    Article  CAS  PubMed  Google Scholar 

  52. Delannoy P, Bazot D, Marie PJ. Long-term treatment with strontium ranelate increases vertebral bone mass without deleterious effect in mice. Metabolism. 2002;51:906–11.

    Article  CAS  PubMed  Google Scholar 

  53. O’Donnell S, Cranney A, Wells GA, Adachi J, Reginster JY. Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst Rev. 2006;4:CD005326.

    Google Scholar 

  54. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab. 2005;90:2816–22.

    Article  CAS  PubMed  Google Scholar 

  55. Yasuda Y, Kaleta J, Bromme D. The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev. 2005;57:973–93.

    Article  CAS  PubMed  Google Scholar 

  56. Duong LT. Therapeutic inhibition of cathepsin K-reducing bone resorption while maintaining bone formation. Bonekey Rep. 2012;1:67.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Stoch SA, Wagner JA. Cathepsin K inhibitors: a novel target for osteoporosis therapy. Clin Pharmacol Ther. 2008;83:172–6.

    Article  CAS  PubMed  Google Scholar 

  58. Schilling AF, Mülhausen C, Lehmann W, Santer R, Schinke T, Rueger JM, Amling M. High bone mineral density in pycnodysostotic patients with a novel mutation in the propeptide of cathepsin K. Osteoporos Int. 2007;18:659–69.

    Article  CAS  PubMed  Google Scholar 

  59. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998;95:13453–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pennypacker B, Shea M, Liu Q, Masarachia P, Saftig P, Rodan S, Rodan G, Kimmel D. Bone density, strength, and formation in adult cathepsin K (-/-) mice. Bone. 2009;44:199–207.

    Article  CAS  PubMed  Google Scholar 

  61. Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong le T. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2012;27:509–23.

    Article  CAS  PubMed  Google Scholar 

  62. Pennypacker BL, Duong le T, Cusick TE, Masarachia PJ, Gentile MA, Gauthier JY, Black WC, Scott BB, Samadfam R, Smith SY, Kimmel DB. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011;26:252–62.

    Article  CAS  PubMed  Google Scholar 

  63. Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, Duong LT. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res. 2012;27(2):524–37.

    Article  CAS  PubMed  Google Scholar 

  64. Scott K, Gentile MA, Horrel C, Winkelmann CT, Crawford R, Szumiloski J, Samadfam R, Smith SY, Duong LT. Efficacy of switching alendronate and odanacatib treatments on bone mass, mechanical properties and bone remodeling in the lumbar spine of ovariectomized rabbits. J Bone Miner Res. 2012;27(Suppl 1) Available at [http://www.asbmr.org/education/AbstractDetail?aid=60e56296-e504-4c68-9c5c-af93bad7741b]

    Google Scholar 

  65. Williams DS, McCracken PJ, Purcell M, Pickarski M, Mathers PD, Savitz AT, Szumiloski J, Jayakar RY, Somayajula S, Krause S, Brown K, Winkelmann CT, Scott BB, Cook L, Motzel SL, Hargreaves R, Evelhoch JL, Cabal A, Dardzinski BJ, Hangartner TN, Duong LT. Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate. Bone. 2013;56(3):489–96.

    Article  CAS  PubMed  Google Scholar 

  66. Tella SH, Gallagher JC. Biological agents in management of osteoporosis. Eur J Clin Pharmacol. 2014;70(11):1291–301.

    Article  CAS  PubMed  Google Scholar 

  67. Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets. 2009;13(4):485–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebocontrolled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  69. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20.

    Article  CAS  PubMed  Google Scholar 

  70. Becker CB. Sclerostin inhibition for osteoporosis – a new approach. N Engl J Med. 2014;370(5):476–7.

    Article  CAS  PubMed  Google Scholar 

  71. McColm J, Hu L, Womack T, Tang CC, Chiang AY. Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res. 2014;29(4):935–43.

    Article  CAS  PubMed  Google Scholar 

  72. Recker R, Benson C, Matsumoto T, et al. A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in post-menopausal women with low bone mineral density. J Bone Miner Res. 2015;30(2):216–24.

    Article  CAS  PubMed  Google Scholar 

  73. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zolendronic acid for the treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356:1809–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily E. Carmody M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Carmody, E.E. (2017). Anti-Resorptive Therapy. In: Rommens, P., Hofmann, A. (eds) Fragility Fractures of the Pelvis. Springer, Cham. https://doi.org/10.1007/978-3-319-66572-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66572-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66570-2

  • Online ISBN: 978-3-319-66572-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics