Skip to main content

Diffusive Limits of the Master Equation in Inhomogeneous Media

  • Chapter
  • First Online:
Nonlinear Systems, Vol. 1

Part of the book series: Understanding Complex Systems ((UCS))

  • 1227 Accesses

Abstract

Diffusion is the macroscopic manifestation of disordered molecular motion. Mathematically, diffusion equations are partial differential equations describing the fluid-like large-scale dynamics of parcels of molecules. Spatially inhomogeneous systems affect in a position-dependent way the average motion of molecules; thus, diffusion equations have to reflect somehow this fact within their structure. It is known since long that in this case an ambiguity arises: there are several ways of writing down diffusion equations containing space dependence within their parameters. These ways are all potentially valid but not necessarily equivalent, meaning that the different diffusion equations yield different solutions for the same data. The ambiguity can only be resolved at the microscopic level: a model for the stochastic dynamics of the individual molecules must be provided, and a well-defined diffusion equation then arises as the long-wavelength limit of this dynamics. In this work we introduce and employ the integro-differential Master Equation (ME) as a tool for describing the microscopic dynamics. We show that is possible to provide a parameterized version of the ME, in terms of a single numerical parameter (\(\alpha \)), such that the different expressions for the diffusive fluxes are recovered for different values of \(\alpha \). This work aims to fill a gap in the literature, where the ME was shown to deliver just one diffusive limit. In the second part of the paper some numerical computer models are introduced, both to support analytical considerations, and to extend the scope of the ME to more sophisticated scenarios, beyond the simplest \(\alpha \)-parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77 (1977)

    Article  MathSciNet  Google Scholar 

  2. Bengfort, M., Malchow, H., Hilker, F.: The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments. J. Math. Biol. https://doi.org/10.1007/s00285-016-0966-8 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bringuier, E.: Kinetic theory of inhomogeneous diffusion. Phys. A 388, 2588 (2009)

    Article  MathSciNet  Google Scholar 

  4. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83 (1948)

    MathSciNet  MATH  Google Scholar 

  5. Coffey, W., Kalmykov, Y.P., Valdron, J.: The Langevin Equation. World Scientific (1998)

    Google Scholar 

  6. Collins, R., Carson, S., Matthew, J.: Diffusion equation for one-dimensional unbiased hopping. Am. J. Phys. 65, 230–7 (1997)

    Article  ADS  Google Scholar 

  7. Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover publications, New-York (1956)

    MATH  Google Scholar 

  8. Elskens, Y., Escande, D.: Microscopic Dynamics of Plasmas and Chaos. Institute of Physics Publishing (2003)

    Google Scholar 

  9. Escande, D., Sattin, F.: When can the Fokker-Planck equation describe anomalous or chaotic transport? Phys. Rev. Lett. 99, 185005 (2007)

    Google Scholar 

  10. Escande, D., Sattin, F.: When can the Fokker-Planck equation describe anomalous or chaotic transport? intuitive aspects. Plasma Phys. Control. Fusion 50, 124023 (2008)

    Article  ADS  Google Scholar 

  11. Fick, A.: On liquid diffusion. J. Membr. Sci. 100, 33–38 (1995)

    Article  Google Scholar 

  12. Graham, T.: On the law of the diffusion of gases. J. Membr. Sci. 100, 17–21 (1995)

    Article  Google Scholar 

  13. Green, A., Naghdi, P.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc., Math. Phys. Sci. 432, 171 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. Guyer, R., Krumhansl, J.: Solution of the linearized phonon boltzmann equation. Phys. Rev. 148, 766 (1966)

    Article  ADS  Google Scholar 

  15. Joseph, D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  16. van Kampen, N.: The expansion of the master equation. Adv. Chem. Phys. 34, 245 (1976)

    Google Scholar 

  17. van Kampen, N.: Itô versus Stratonovich. J. Stat. Phys. 24, 175–187 (1981)

    Google Scholar 

  18. van Kampen, N.: Diffusion in inhomogeneous media. J. Phys. Chem. Solids 49, 673–677 (1988)

    Article  ADS  Google Scholar 

  19. Kenkre, V., Montroll, E., Shlesinger, M.: Generalized master equations for continuous-time random walks. J. Stat. Phys. 9, 45 (1973)

    Article  ADS  Google Scholar 

  20. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613 (2015)

    Article  Google Scholar 

  21. Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Drift without flux: Brownian walker with a space-dependent diffusion coefficient. EPL 54, 28 (2001)

    Article  ADS  Google Scholar 

  22. Lançon, P., Batrouni, G., Lobry, L., Ostrowsky, N.: Brownian walker in a confined geometry leading to a space-dependent diffusion coefficient. Phys. A 304, 65–76 (2002)

    Article  Google Scholar 

  23. Landsberg, P.: D grad v or grad (D v)? J. Appl. Phys. 56, 1119 (1984)

    Article  ADS  Google Scholar 

  24. Lichtenberg, A., Lieberman, M.: Regular and Stochastic Motion. Springer (1983)

    Google Scholar 

  25. Mannella, R., McClintock, P.: Comment on influence of noise on force measurements. Phys. Rev. Lett. 107, 078901 (2011)

    Article  ADS  Google Scholar 

  26. Mannella, R., McClintock, P.: Itô versus Stratonovich: 30 years later. Fluct. Noise Lett. 11, 1240010 (2012)

    Article  Google Scholar 

  27. Mason, E., Evans, R.: Graham’s laws: simple demonstrations of gases in motion: part i, theory. J. Chem. Educ. 46, 359–423 (1969)

    Google Scholar 

  28. Mason, E., Kronstadt, B.: Graham’s laws of diffusion and effusion. J. Chem. Educ. 44, 740 (1967)

    Article  Google Scholar 

  29. Maxwell, J.: On the dynamical theory of gases. Philos. Trans. R. Soc. London 157, 49–88 (1867)

    Article  ADS  Google Scholar 

  30. Philibert, J.: One and a half century of diffusion: Fick, Einstein, before and beyond. Diffus. Fundam. 4, 6 (2006)

    Google Scholar 

  31. Risken, H.: The Fokker-Planck Equation. Springer (1996)

    Google Scholar 

  32. Ruckstuhl, A.: Thomas Graham’s study of the diffusion of gases. J. Chem. Educ. 28, 594 (1951)

    Article  ADS  Google Scholar 

  33. Ryskin, G.: Simple procedure for correcting equations of evolution: application to Markov processes. Phys. Rev. E 56, 5123–5127 (1997)

    Article  ADS  Google Scholar 

  34. Sattin, F.: Fick’s law and Fokker-Planck equation in inhomogeneous environments. Phys. Lett. A 372, 3941 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. Schnitzer, M.: Theory of continuum random walks and application to chemotaxis. Phys. Rev. E 48, 2553 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  36. Smythe, J., Moss, F., McClintock, P., Clarkson, D.: Itô versus Stratonovich revisited. Phys. Lett. A 97, 95–98 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sokolov, I.: Itô, Stratonovich, Hänggi and all the rest: the thermodynamics of interpretation. Chem. Phys. 375, 359–363 (2010)

    Article  ADS  Google Scholar 

  38. Ván, P., Fülöp, T.: Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. (Berlin) 524, 470–478 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. Van Milligen, B.P., Bons, P., Carreras, B., Sánchez, R.: On the applicability of Fick’s law to diffusion in inhomogeneous systems. Eur. J. Phys. 26, 913 (2005)

    Article  ADS  Google Scholar 

  40. Van Milligen, B.P., Carreras, B., Sánchez, R.: Pulse propagation in a simple probabilistic transport model. Plasma Phys. Control. Fusion 47, B743 (2005)

    Article  Google Scholar 

  41. Vernotte, M.: Les paradoxes de la theorie continue de i’equation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)

    Google Scholar 

  42. Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 104, 170602 (2010)

    Article  ADS  Google Scholar 

  43. Volpe, G., Helden, L., Brettschneider, T., Wehr, J., Bechinger, C.: Influence of noise on force measurements. Phys. Rev. Lett. 107, 078902 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

FS wishes to thank Prof. E. Bringuier and Prof. M. Baiesi for providing him with some of the literature quoted, Dr. D.F. Escande, Dr. S. Cappello, Dr. I. Predebon for reading drafts of this paper and Prof. G. Ryskin for interesting discussions about his proof. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. LS thanks MIUR for partial support (PRIN Project 2010LLKJBX).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Salasnich .

Editor information

Editors and Affiliations

Appendix

Appendix

The rationale of Ryskin’s result is based upon the Central Limit Theorem (CLT). The total displacement of a particle is approximated as the sum of several uncorrelated jumps. The single jumps are not necessarily identical, but picked up from some statistical distribution. Regardless of the details of the distribution, provided that the variance of the jumps remains finite, the CLT warrants that the total displacement distributes according to a statistical distribution that quickly approaches a Gaussian distribution after even a moderate numbers of steps.

For brevity we will sketch Ryskin’s proof for homogeneous systems only. Its generalization to inhomogeneous systems adds some mathematical labour but does not differ conceptually. In homogeneous systems P depends just from the difference of its arguments: \(P = P(x-z)\), as explained in Sect. 3. This allows for a dramatic simplification after the Fourier transform of Eq. (8) is taken:

$$\begin{aligned} {\partial \tilde{n}(k,t) \over \partial t} = - {\tilde{n}(k,t) \over \tau } + {\tilde{n}(k,t) \tilde{P}(k) \over \tau } \end{aligned}$$
(30)

Equation (30) can be solved analytically:

$$\begin{aligned} \tilde{n}(k,t) = \tilde{n}(k,t=0) \times \exp \left( \int _0^t {dt \over \tau } (\tilde{P}(k)-1) \right) = \exp \left( {t \over \tau } (\tilde{P}(k)-1) \right) \end{aligned}$$
(31)

Formally, n(xt) comes from the inverse transform of (31) and it does not appear analytically computable for generic P. However, we can write

$$\begin{aligned} \tilde{P}(k) = \int dz \, e^{i k z} P(z) = \sum _{m=0}^\infty {(i k)^m \over m!} \int dz \, z^m \, P(z) \end{aligned}$$
(32)

We will be considering just specularly symmetric transitions, as customary: \(P(x-z) = P(z-x)\); the moments in Eq. (32) become

$$\begin{aligned} \int dz \, P = 1 = \tilde{P}(k=0) \end{aligned}$$
(33)
$$\begin{aligned} \int dz \, z \, P = 0 \end{aligned}$$
(34)
$$\begin{aligned} \int dz \, z^2 P = \sigma ^2 \end{aligned}$$
(35)
$$\begin{aligned} \int dz \, z^m P = <z^m> \equiv \mu _m , \quad m \ge 3 \end{aligned}$$
(36)

and \(\mu _m = 0\) for all odd m’s.

Let us now rewrite Eq. (32) using the trigonometric expression of the exponential:

$$\begin{aligned} \tilde{P}(k)= & {} \int dz \, \cos (k z) P(z) + i \int dz \, \sin (k z) P(z) \\ \nonumber\rightarrow & {} |\tilde{P}(k)|^2 = \left( \int dz \, \cos (k z) P(z) \right) ^2 + \left( \int dz \, \sin (k z) P(z) \right) ^2 \\ \nonumber= & {} <\cos (k z)>^2 + < \sin (k z) >^2 \end{aligned}$$
(37)

This implies that \(|\tilde{P}(k)| \le 1\) for generic \(k \ne 0\). Furthermore,

$$\begin{aligned} |\tilde{P}(k)| \rightarrow 0, k \rightarrow \infty \end{aligned}$$
(38)

To demonstrate this, let us note that \(\sin (k z), \cos (k z)\) are periodic with wavelength \(\lambda = 2 \pi /k \rightarrow 0, k \rightarrow \infty \), while P is a smoothly varying function, hence is almost constant over \(\lambda \): \(P(z) \approx P(z+\lambda ) = P_0\). Therefore

$$\begin{aligned} \int _0^\lambda dz \, \cos (k z) P(z) \approx P_0 \int _0^\lambda dz \, \cos (k z) \approx 0 \end{aligned}$$
(39)

(the same holds for \(\sin (k z)\)).

We define \(m, \varDelta t\) such that \(t = j \varDelta t\), with j integer and \(\varDelta t \approx O(\tau )\). Equation (31) becomes

$$\begin{aligned}&\exp \left( {t \over \tau } (\tilde{P}(k) -1) \right) = \left[ \exp \left( {\varDelta t \over \tau }(\tilde{P}(k) -1) \right) \right] ^j = \\ \nonumber&\left[ \exp \left( {\varDelta t \over \tau } \left( - {k^2 \sigma ^2 \over 2} + \sum _{m=3}^\infty {(i k)^m \over m!} \mu _m \right) \right) \right] ^j \end{aligned}$$
(40)

In the last line of (41) we have taken advantage of (33)–(36).

Let us define \(\xi = j^{1/2} k\). Equation (41) becomes

$$\begin{aligned} {\tilde{n}(k,t) \over \tilde{n}(k,t=0)} = \exp \left[ {\varDelta t \over \tau } \left( -{\xi ^2 \sigma ^2 \over 2} + \sum _{m=3}^\infty {1 \over j^{{m \over 2}-1}} {(i \xi )^m \over m!} \mu _m \right) \right] \end{aligned}$$
(41)

Then, we consider separately the two limits \( \xi > 1\) and \(\xi \le 1\) (Notice that the boundary between \(\xi > 1\) and \(\xi \le 1\) is a dynamical one: it varies with time, i.e. with j). The former limit corresponds, for any fixed time, to taking \(k \rightarrow \infty \) and therefore the result (38) holds: there is not contribution to the density from features at these wavelengths. Conversely, when \(\xi \le 1\) the first term inside the exponent in Eq. (41) dominates over the others hence we can retain just it and, reverting to the original variables

$$ \tilde{n}(k,t) = \tilde{n}(k,t) \times \exp \left[ -{t \over \tau } {(k \sigma )^2 \over 2} \right] $$

which is the propagator of the diffusion equation, with diffusivity = \(\sigma ^2/2\tau \). This concludes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salasnich, L., Bonato, A., Sattin, F. (2018). Diffusive Limits of the Master Equation in Inhomogeneous Media. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_10

Download citation

Publish with us

Policies and ethics