Skip to main content

An Expert System Based on Fuzzy Bayesian Network for Heart Disease Diagnosis

  • Conference paper
  • First Online:
Fuzzy Logic in Intelligent System Design (NAFIPS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 648))

Included in the following conference series:

Abstract

In this paper, a Bayesian (belief) network with fuzzy probabilities is proposed for heart disease diagnosis. Due to the complexity of relations between the features we used the Bayesian belief network. The fuzzy probabilities are also used because of the multiplicity of initial probability and belonging each of features to their related class. We have used the classification methods for determining the heart diseases class. For depicting the Bayesian network, we applied the K2 algorithm. We comprised the results of our network with the result of the Bayesian network, naive Bayesian, multi-Support vector machine, multilayer perceptron, radial basis function, and k-nearest neighbors. The result showed that our model is more accurate than others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barr, A., Feigenbaum, E., Roads, C.: The Handbook of Artificial Intelligence, vol. 1, p. 78 (1982)

    Google Scholar 

  2. Soni, J., Ansari, U., Sharma, D., Soni, S.: Predictive data mining for medical diagnosis: an overview of heart disease prediction. Int. J. Comput. Appl. 17(8), 43–48 (2011)

    Google Scholar 

  3. Rajkumar, A., Reena, G.S.: Diagnosis of heart disease using datamining algorithm. Glob. J. Comput. Sci. Technol. 10(10), 38–43 (2010)

    Google Scholar 

  4. Srinivas, K., Rao, G.R., Govardhan, A.: Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques. In: 2010 5th International Conference on 2010 Computer Science and Education (ICCSE), pp. 1344–1349. IEEE, 24 August 2010

    Google Scholar 

  5. Xing, Y., Wang, J., Zhao, Z.: Combination data mining methods with new medical data to predicting outcome of coronary heart disease. In: 2007 International Conference on 2007 Convergence Information Technology, pp. 868–872. IEEE, 21 November 2007

    Google Scholar 

  6. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  7. McKendrick, I.J., Gettinby, G., Gu, Y., Reid, S.W., Revie, C.W.: Using a Bayesian belief network to aid differential diagnosis of tropical bovine diseases. Prev. Vet. Med. 47(3), 141–156 (2000)

    Article  Google Scholar 

  8. Heckerman, D.E., Horvitz, E.J., Nathwani, B.N.: Toward normative expert systems: the Pathfinder project. Methods Inf. Med. 31, 90I105 (1991)

    Google Scholar 

  9. Li, C., Ueno, M.: An extended depth-first search algorithm for optimal triangulation of Bayesian networks. Int. J. Approx. Reason. 31(80), 294–312 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Díez, F.J., Mira, J., Iturralde, E., Zubillaga, S.: DIAVAL, a Bayesian expert system for echocardiography. Artif. Intell. Med. 10(1), 59–73 (1997)

    Article  Google Scholar 

  11. Shwe, M.A., Middleton, B., Heckerman, D.E., Henrion, M., Horvitz, E.J., Lehmann, H.P., Cooper, G.F.: Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Methods Inf. Med. 30(4), 241–255 (1991)

    Google Scholar 

  12. Pradhan, M., Provan, G., Middleton, B., Henrion, M.: Knowledge engineering for large belief networks. In: Proceedings of 10th International Conference on Uncertainty in Artificial Intelligence, 29 July 1994, pp. 484–490. Morgan Kaufmann Publishers Inc. (1994)

    Google Scholar 

  13. Li, Y.C.: Automated probabilistic transformation of a large medical diagnostic support system (1995)

    Google Scholar 

  14. Matzkevich, I., Abramson, B.: Decision analytic networks in artificial intelligence. Manag. Sci. 41(1), 1–22 (1995)

    Article  MATH  Google Scholar 

  15. Henrion, M., Cooley, D.R.: An experimental comparison of knowledge engineering for expert systems and for decision analysis. In: Proceedings of 6th National Conference on AI (AAAI-1987), Seattle, WA, pp. 471–476 (1987)

    Google Scholar 

  16. Kalagnanam, J., Henrion, M.: A comparison of decision analysis and expert rules for sequential diagnosis. arXiv preprint arXiv:1304.2362 (2013)

  17. Wise, B.P., Henrion, M.: A framework for comparing uncertain inference systems to probability. In: Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, pp. 69–83. Elsevier, Amsterdam (1986)

    Chapter  Google Scholar 

  18. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  19. Ryhajlo, N., Sturlaugson, L., Sheppard, J.W.: Diagnostic Bayesian networks with fuzzy evidence. In: 2013 IEEE AUTOTESTCON, pp. 1–8. IEEE (2013)

    Google Scholar 

  20. Okuda, T., Tanaka, H., Asai, K.: A formulation of fuzzy decision problems with fuzzy information using probability measures of fuzzy events. Inf. Control 38(2), 135–147 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanaka, H., Okuda, T., Asai, K.: Fuzzy information and decision in statistical model. Adv. Fuzzy Set Theory Appl. 303–320 (1979)

    Google Scholar 

  22. Uemura, Y.: A decision rule on fuzzy events. Japan. J. Fuzzy Theory Syst. 3, 291–300 (1991)

    MathSciNet  MATH  Google Scholar 

  23. https://archive.ics.uci.edu/ml/datasets/Heart+Disease

  24. Viertl, R., Hule, H.: On Bayes’ theorem for fuzzy data. Stat. Pap. 32(1), 115–122 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Viertl, R.: Statistical Methods for Non-precise Data. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  26. Tang, H., Liu, S.: Basic theory of fuzzy Bayesian networks and its application in machinery fault diagnosis. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2007 24 August 2007, vol. 4, pp. 132–137. IEEE (2007)

    Google Scholar 

  27. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  28. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Burlington (2014)

    MATH  Google Scholar 

  29. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Fazel Zarandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Fazel Zarandi, M.H., Seifi, A., Ershadi, M.M., Esmaeeli, H. (2018). An Expert System Based on Fuzzy Bayesian Network for Heart Disease Diagnosis. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-67137-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67137-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67136-9

  • Online ISBN: 978-3-319-67137-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics