Skip to main content

Low-Pressure Cold Spray (LPCS)

  • Chapter
  • First Online:
Cold-Spray Coatings

Abstract

The Chapter “Low-Pressure Cold Spray” presents a description of basics of LPCS technology, bonding mechanisms, temperature effects and LPCS localization processes. To illustrate the main aspects of LPCS system parameters determination, the numerical simulation and experimental data are presented. The emphasis is placed on the proper development of the cold-sprayed metal matrix composite coatings and their structure and properties, which are of paramount importance to the success of LPCS. Processes such as bonding, hardening and softening of the coating materials during cold spraying and coating structure formation at following heat treatment (sintering) are dealt with from the theoretical as well as practical aspect.

Applications of LPCS technology occur for the cases where conventional thermal spraying technologies cannot be successfully used. The analysis of various components repair is presented in which the methodology and accompanying technical data for the transition of cold spray technology into the industry, and several case studies are presented. The case studies show the tremendous impact that LPCS has made for a few select applications, representing steels, magnesium, aluminium and composite materials, while attempting to include as much technical data substantiating the advantages and benefits gained by transition of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad Z (2006) Principles of corrosion engineering and corrosion control. Butterworth-Heinemann, p 187

    Google Scholar 

  • Alkhimov AP, Gudilov AI, Kosarev VF, Nesterovich NI (2000) Specific features of microparticle deformation upon impact on a rigid barrier. J Appl Mech Tech Phys 41(1):188–192

    Google Scholar 

  • ASM Handbook (2003) Corrosion: fundamentals, testing, and protection, vol 13A. ASM International, New York, pp 1779–1793

    Google Scholar 

  • Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold spraying. Acta Mater 51:4379–4394

    Article  Google Scholar 

  • Assadi H, Kreye H, Gartner F, Klassen T (2016) Cold spraying – a materials perspective. Acta Mater 116:382–407

    Article  Google Scholar 

  • Baker MA, Gissler W, Klose S, Trampert M, Weber F (2000) Morphologies and corrosion properties of PVD Zn-Al coatings. Surf Coat Technol 125:207

    Google Scholar 

  • Balaji D, Maridurai T (2016) Experimental investigation on engine performance and emission in diesel engine by aluminum-titanium thermal barrier coating. Int J Chem Sci 14(1):152–160

    Google Scholar 

  • Boag A, Taylor RJ, Muster TH, Goodman N, Hughes AE (2010) Stable pit formation on AA2024-T3 in a NaCl environment. Corros Sci 52(1):90–103

    Article  Google Scholar 

  • Boag A, Hughes AE, Glenn AM, Muster TN (2011) Corrosion of AA2024-T3 part I. Localized corrosion of isolated IM particles. Corros Sci 53(1):17–26

    Article  Google Scholar 

  • Bobzin K, Öte M, Königstein T (2017) Investigation of amorphous/nanocrystalline iron-based thermal barrier coatings. J Therm Spray Tech. https://doi.org/10.1007/s11666-016-0520-7

  • Barbezat G (2006) Application of thermal spraying in the automobile industry. Surf Coat Technol 201:2028–2031

    Google Scholar 

  • Champagne VK (2007) The cold spray materials deposition process: fundamentals and applications. Woodhead Publishing Limited, Cambridge, pp 230–312

    Book  Google Scholar 

  • Champagne V, Helfritch D (2015) Critical assessment 11: structural repairs by cold spray. Mater Sci Technol 31(6):627–634

    Article  Google Scholar 

  • Chang BY, Park SM (2010) Electrochemical impedance spectroscopy. Annu Rev Anal Chem 3:207–229

    Article  Google Scholar 

  • Covac C, Alaux TJ, Marrow E, Covekar A, Legat M (2010) Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel. Corros Sci 52(6):2015–2025

    Article  Google Scholar 

  • Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, Ohio, pp 220–225

    Google Scholar 

  • DeForce B, Eden T, Potter J, Champagne V, Leyman P, Helfritch D (2007) Application of aluminum coatings for the corrosion protection of magnesium by cold spray. Proceedings of TRI service corrosion conference, Denver, USA

    Google Scholar 

  • Dzhurinskiy D, Maeva E, Ev L, Maev RG (2012) Corrosion protection of light alloys using low pressure cold spray. J Therm Spray Tech 2(12):304–313

    Article  Google Scholar 

  • Eakins DE Thadhani NN (2006) Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states, J Appl Phys 100:073503: doi: https://doi.org/10.1063/1.2354326

  • Estrin Y, Toth LS, Molinari A, Brechet Y (1998) A dislocation based model for all hardenibg stages in large strain deformation. Acta Mater 46(15):5509–5522

    Article  Google Scholar 

  • Fenker M, Balzer M, Kappl H (2014) Corrosion protection with hard coatings on steel: past approaches and current research efforts. Surf Coat Technol 257:182–205

    Article  Google Scholar 

  • Gray JE, Luan B (2002) Protective coatings on magnesium and its alloys — a critical review. J Alloys Compd 336(1–2):88–113

    Article  Google Scholar 

  • Grujicic M, Zhao CL, DeRosset WS, Helfritch D (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater Des 25:681–688

    Article  Google Scholar 

  • Guillaumin V, Mankowski G (1999) Corrosion protection with aluminum coatings on steel. Corros Sci 41:421–438

    Google Scholar 

  • Gust WH (1982) High impact deformation of metal cylinders at elevated temperatures. J Appl Phys 53(5):3566–3575

    Article  Google Scholar 

  • Guzman MA, Gissler W, Klose S, De Rossi S (2000) Vapour deposited Zn-Cr alloy coatings for enhanced manufacturing and corrosion resistance of steel sheets. Surf Coat Technol 125:218–227

    Google Scholar 

  • Harach DJ, Vecchio KS (2001) Microstructure evolution in metal-intermetallic laminate (MIL) composites synthesized by reactive foil sintering in air. Metall Mater Trans A 32A:1493–1505

    Article  Google Scholar 

  • Heinz A, Haszler A, Keidel C, Bendictus R, Mille WS (2000) Recent development in aluminium alloys for aerospace applications. Mater Sci Eng 280(1):102–107

    Article  Google Scholar 

  • Holmberg K, Matthews A. (2009) Coatings tribology: properties, mechanisms, techniques and applications in surface engineering. Elsevier tribology and interface engineering series no. 56.2nd ed. Amsterdam, The Netherlands: Elsevier

    Google Scholar 

  • Holmberg K, Laukkanen A, Ghabchi A, Rombouts M, Turunen E, Waudby R, Suhonen T, Valtonen K, Sarlin E (2014) Computational modelling based wear resistance analysis of thick composite coatings. Tribol Int 72:13–30

    Article  Google Scholar 

  • Hong T, Nagumo M (1997) Effect of surface roughness on early stages of pitting corrosion of type 301 stainless steel. Corros Sci 39:665

    Google Scholar 

  • Hu N, Molinari JF (2004) Shear bands in dense metallic granular materials. J Mech Phys Solids 52:499–531

    Article  Google Scholar 

  • Hughes AE, Boag A, Glenn AM, Muster TN, Ryan C, Luo C, Thompson GE (2011) Corrosion of AA2024-T3 part II co-operative corrosion. Corros Sci 53(1):27–39

    Article  Google Scholar 

  • Hussain T, McCartney DG, Shipway PH, Zhang D (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18(3):364–379

    Article  Google Scholar 

  • Hwang IJ, Hwang DY, Kim YM, Yoo B, Shin DH (2010) Formation of uniform passive oxide layers on high Si content Al alloy by plasma electrolytic oxidation. Alloys J Compd 504:527–530

    Google Scholar 

  • Jalilvand V, Omidvar H, Shakeri HR, Rahimipour MR (2013) Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy. Mater Charact 75:20–28

    Article  Google Scholar 

  • Jindal V, Srivastava VC, Das A, Ghosh RN (2006) Reactive diffusion in the roll bonded iron–aluminum system. Mater Lett 60:1758–1761

    Article  Google Scholar 

  • Klinkov SV, Kosarev VF, Rein M (2005) Cold spray deposition: significance of particle impact phenomena. Aerosp Sci Technol 9(7):582–591

    Google Scholar 

  • Koivuluoto H, Lagerbom J, Kylmalahti M, Vuoristo P (2008) Microstructure and mechanical properties of low-pressure cold-sprayed (LPCS) coatings. J Therm Spray Technol 17(5–6):721–727

    Article  Google Scholar 

  • Lee H, Jung SH, Lee SY, Ho Y, Kyung Y, Ko H (2005) Fundamental study of cold gas dynamic spray process. Appl Surf Sci 252:1891–1898

    Google Scholar 

  • Li W, Li DY (2006) Influence of surface morphology on corrosion and electronic behavior. Acta Mater 54:445–452

    Google Scholar 

  • Li H, Li X, Sun M, Wang H, Huang G (2010) Corrosion resistance of cold-sprayed Zn-50Al coatings in seawater. J Chin Soc Corros Prot 30:62–66

    Google Scholar 

  • Li Q, Lu H, Cui J, Kuma V, An M, Li DY (2017) Produce mirror-shining surface of electrogalvanized steel with significantly elevated scratch resistance through combined nanoelectrodeposition and passivation treatment. Wear 376-377:1707–1712

    Google Scholar 

  • Ls-Dyna keyword user’s manual (2013) Vol I. LSTC

    Google Scholar 

  • Luo J-G, Acoff VL (2004) Using cold roll bonding and annealing to process Ti/al multi-layered composites from elemental foils. Mater Sci Eng A Struct Mater 379(1–2):164–172

    Article  Google Scholar 

  • Maev RG, Leshchynsky V (2007) Introduction to low pressure gas dynamic spray. John Willey and Son – VCH, Manheim, p 207

    Google Scholar 

  • Maev RG, Leshchynsky V (2015) Cold gas dynamic spray. CRC Press, Boca Raton, 334p

    Google Scholar 

  • Maev R Gr, Leshchinsky E, Maeva E (2011) New cold spray based technique of FeAl intermetallic compound coating synthesis. In: Proceeding of ITSC 2011 Conference, Hamburg, Germany

    Google Scholar 

  • Maev R Gr, Leshchynsky V, Strumban E., Ziganshin D., Belenkov R., Dzhurinskiy D. (2017) Apparatus and method for cold spray coating processing. US Patent Application, US2017/0121825

    Google Scholar 

  • Maitra S, English GC (1981) Mechanism of localized corrosion of 7075 alloy plate. Metall Trans A 12:535

    Google Scholar 

  • Massalski TB (1986) Binary alloy phase diagrams. ASM International, Metals Park, p 112

    Google Scholar 

  • Molinari A (1997) Collective behaviour and spacing of adiabatic shear bands. J Mech Phys Solids 45(9):1551–1575

    Article  Google Scholar 

  • Motzet H, Pollmann H (1999) Synthesis and characterization of sulfite-containing AFM phases in the system CaO-Al2O3-SO2-H2O. Cem Concr Res 29:1005–1011

    Google Scholar 

  • Nakai M, Rto T (2000) New aspect of development of high strength aluminum alloys for aerospace applications. Mater Sci Eng 285(1–2):62–68

    Article  Google Scholar 

  • Nie JF (2014) Physical metallurgy of light alloys. Elsevier, Physical Mettalurgy, pp 2009–2156

    Book  Google Scholar 

  • Orazem ME, Pebere N, Tribollet B (2006) Enhanced graphical representation of electrochemical impedance data. J Electrochem Soc 153(4):B129–B136

    Article  Google Scholar 

  • Papyrin A (2001) Cold spray technology. Adv Mater Process 159(9):49–51

    Google Scholar 

  • Papyrin A, Kosarev V, Klinkov S, Alkhimov A (2006) Cold spray technology. Elsevier, London pp 125–210

    Google Scholar 

  • Pawlowski L (2008) The science and engineering of thermal spray coatings. John Wiley & Sons, England, pp 220–590

    Book  Google Scholar 

  • Pourbaix M (1975) Atlas of electrochemical equilibria in aqueous solutions. NACE, Houston

    Google Scholar 

  • Rojas PN, Rodil SE (2012) Corrosion behaviour of amorphous niobium oxide coatings. Int J Electrochem Sci 7:1443–1458

    Google Scholar 

  • Sasaki GT, Burstein G (1996) The generation of surface roughness during slurry erosion-corrosion and its effect on the pitting potential. Corros Sci 38:2111–2124

    Google Scholar 

  • Schmidt T, Gartner F, Kreye H (2006) New developments in cold spray based on higher gas and particle temperatures. Therm Spray Technol 15:488–494

    Article  Google Scholar 

  • Schmitt G, Schütze M, Hays G (2009) Global needs for knowledge dissemination, research and development in materials deterioration and corrosion control. World Corrosion Organization (WCO), New York

    Google Scholar 

  • Shin D-II, Gitzhofer F, Moreau C (2007) Thermal property evolution of metal based thermal barrier coatings with heat treatments. J Mater Sci 42:5915–5923

    Article  Google Scholar 

  • Smulko JM, Darowicki K, Zieliñski A (2007) On electrochemical noise analysis for monitoring of uniform corrosion rate. IEEE Trans Instrum Meas 56(5):2018–2023

    Article  Google Scholar 

  • Spencer K, Fabijanic DM, Zhang M-X (2009) The use of al–Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf Coat Technol 204:336–344

    Article  Google Scholar 

  • Steinhauser S, Wielage B (1997) Composite coatings: manufacture, properties, and applications. Surf Eng 13(4):289–294

    Article  Google Scholar 

  • Straffelini G, Pellizzari M, Molinari A (2004) Influence of load and temperature on the dry sliding behaviour of Al-based metal-matrix-composites against friction material. Wear 256(7-8):754–763

    Google Scholar 

  • Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550

    Google Scholar 

  • Tian W, Wang Y, Zhang T, Yang Y (2009) Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3-13%TiO2 coatings. Mater Chem Phys 118:37–45

    Google Scholar 

  • Takahashi H, Sakairi M, Kikuchi T (2010) Three-dimensional microstructure fabrication with aluminum anodizing, laser irradiation, and electrodeposition. Mod Asp Electrochem 46:59–174

    Google Scholar 

  • Tao Y, Xiong T, Sun C, Kong L, Cui X, Li T (2010) Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy. Corros Sci 52:3191–3197

    Google Scholar 

  • Terada Y, Ohkubo K, Nakagawa K, Mohri T, Suzuki T (1995) Thermal conductivity of B-2 aluminides and titanides. Intermetallics 3:347–355

    Google Scholar 

  • Van Steenkiste TH, Smith JR, Teets RE, Moleski JJ, Gorkiewicz DW, Tison RP, Marantz DR, Kowalsky KA, Riggs WL, Zajchowski PH, Pilsner B, McCune RC, Barnett KJ (1999) Kinetic spray coatings. Surf Coat Technol 111(1):62–71

    Google Scholar 

  • Van Steenkiste TH, Smith JR, Teets RE, Moleski JJ, Gorkiewicz DW (2000) Kinetic spray coating method and apparatus. US Patent 6:139–913

    Google Scholar 

  • Van Steenkiste TH, Smith JR, Teets RE (2002) Aluminum coatings via kinetic spray with relatively large powder particles. Surf Coat Technol 154(2-3):237–252

    Google Scholar 

  • Van Steenkiste TH, Kowalsky K, Berghorn C (2015) Particle velocity and particle temperature parameter effects on coating formation. In: Maev R, Leshchynsky V (eds) Book cold gas dynamic spray. CRC Press, pp 220–235

    Google Scholar 

  • Villafuerte J (2005) Cold spray: a new technology. Weld J 84(5):24–29

    Google Scholar 

  • Walter JW (1992) Numerical experiments on adiabatic shear band formation in one dimension. Int J Plast 8:657–693

    Article  Google Scholar 

  • Winston R (ed) (2011) Uhlig’s corrosion handbook, 3rd edn. Wiley, Oxford, London, p 1296

    Google Scholar 

  • Yandouzi M, Gaydos S, Guo D, Ghelichi R, Jodoin B (2014) Aircraft skin restoration and evaluation. J Therm Spray Tech 23(8):1281–1290

    Article  Google Scholar 

  • Yu M, Li W, Guo X, Liao H (2013) Impacting behavior of large oxidized copper particles in cold spraying. J Therm Spray Technol 22:433–440

    Article  Google Scholar 

  • Zhanpeng J (1981) A study of the range of stability of sigma phase in some ternary systems. Scand J Metall 10:279–287

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volf Leshchynsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maev, R.G., Leshchynsky, V. (2018). Low-Pressure Cold Spray (LPCS). In: Cavaliere, P. (eds) Cold-Spray Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-67183-3_4

Download citation

Publish with us

Policies and ethics