Skip to main content

Collage CNN for Renal Cell Carcinoma Detection from CT

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

Renal cell carcinoma (RCC) is a common malignancy that accounts for a steadily increasing mortality rate worldwide. Widespread use of abdominal imaging in recent years, mainly CT and MRI, has significantly increased the detection rates of such cancers. However, detection still relies on a laborious manual process based on visual inspection of 2D image slices. In this paper, we propose an image collage based deep convolutional neural network (CNN) approach for automatic detection of pathological kidneys containing RCC. Our collage approach overcomes the absence of slice-wise training labels, enables slice-reshuffling based data augmentation, and offers favourable training time and performance compared to 3D CNNs. When validated on clinical CT datasets of 160 patients from the TCIA database, our method classified RCC cases vs. normal kidneys with 98% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Genome Atlas Research Network: Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499(7456), 43–49 (2013)

    Google Scholar 

  2. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. Cancer J. Clin. 65(1), 5–29 (2015)

    Article  Google Scholar 

  3. Ridge, C.A., Pua, B.B., Madoff, D.C.: Epidemiology and staging of renal cell carcinoma. Semin. Interv. Radiol. 31(01), 003–008 (2014)

    Article  Google Scholar 

  4. Escudier, B., Eisen, T., Porta, C., Patard, J.J., Khoo, V., Algaba, F., Mulders, P., Kataja, V., ESMO Guidelines Working Group: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23(suppl 7), vii65-vii71 (2012)

    Google Scholar 

  5. Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MCV 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18421-5_11

    Chapter  Google Scholar 

  6. Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Med. Image Anal. 17(8), 1293–1303 (2013)

    Article  Google Scholar 

  7. Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33454-2_9

    Chapter  Google Scholar 

  8. Lu, X., Xu, D., Liu, D.: Robust 3D organ localization with dual learning architectures and fusion. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 12–20. Springer, Cham (2016). doi:10.1007/978-3-319-46976-8_2

    Google Scholar 

  9. Hussain, M.A., Hamarneh, G., O’Connell, T.W., Mohammed, M.F., Abugharbieh, R.: Segmentation-free estimation of kidney volumes in CT with dual regression forests. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 156–163. Springer, Cham (2016). doi:10.1007/978-3-319-47157-0_19

    Chapter  Google Scholar 

  10. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

    Article  MATH  Google Scholar 

  11. Zhu, W., Lou, Q., Vang, Y.S., Xie, X.: Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification. arXiv preprint arXiv:1612.05968 (2016)

  12. Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D.N., Zhou, X.S.: Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5), 1332–1343 (2016)

    Article  Google Scholar 

  13. Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Eric, I., Chang, C.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630 (2014)

    Google Scholar 

  14. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12), i52–i59 (2016)

    Article  Google Scholar 

  15. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  16. Shinagare, A.B., Vikram, R., Jaffe, C., Akin, O., Kirby, J., Huang, E., Freymann, J., Sainani, N.I., Sadow, C.A., Bathala, T.K., Rubin, D.L.: Radiogenomics of clear cell renal cell carcinoma: preliminary findings of the cancer genome atlas–renal cell carcinoma (TCGA-RCC) imaging research group. Abdom. Imaging 40(6), 1684–1692 (2015)

    Article  Google Scholar 

  17. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR (2014)

    Google Scholar 

  18. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

    Google Scholar 

  19. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations (2015)

    Google Scholar 

  20. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the Institute for Computing, Information and Cognitive Systems (ICICS) at UBC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arafat Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hussain, M.A., Amir-Khalili, A., Hamarneh, G., Abugharbieh, R. (2017). Collage CNN for Renal Cell Carcinoma Detection from CT. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics