Skip to main content

Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment

  • Conference paper
  • First Online:
Patch-Based Techniques in Medical Imaging (Patch-MI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10530))

Included in the following conference series:

  • 1641 Accesses

Abstract

It has been recently demonstrated that the local BOLD signals in resting-state fMRI (rs-fMRI) can be captured for the white matter (WM) by functional correlation tensors (FCTs). FCTs provide similar orientation information as diffusion tensors (DTs), and also functional information concerning brain dynamics. However, FCTs are susceptible to noise due to the low signal-to-noise ratio nature of WM BOLD signals. Here we introduce a robust FCT estimation method to facilitate individualized diagnosis. First, we develop a noise-tolerating patch-based approach to measure spatiotemporal correlations of local BOLD signals. Second, it is also enhanced by DTs predicted from the input rs-fMRI using a learning-based regression model. We evaluate our trained regressor using the high-resolution HCP dataset. The regressor is then applied to estimate the robust FCTs for subjects in the ADNI2 dataset. We demonstrate for the first time the disease diagnostic value of robust FCTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gore, J.C.: Principles and practice of functional MRI of the human brain. J. Clin. Investig. 112, 4–9 (2003)

    Article  Google Scholar 

  2. Wise, R.G., Ide, K., Poulin, M.J., Tracey, I.: Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21, 1652–1664 (2004)

    Article  Google Scholar 

  3. Tettamanti, M., Paulesu, E., Scifo, P., Maravita, A., Fazio, F., Perani, D., Marzi, C.: Interhemispheric transmission of visuomotor information in humans: fMRI evidence. J. Neurophysiol. 88, 1051–1058 (2002)

    Google Scholar 

  4. Mosier, K.M., Liu, W.-C., Maldjian, J.A., Shah, R., Modi, B.: Lateralization of cortical function in swallowing: a functional MR imaging study. Am. J. Neuroradiol. 20, 1520–1526 (1999)

    Google Scholar 

  5. Ding, Z., Xu, R., Bailey, S.K., Wu, T.-L., Morgan, V.L., Cutting, L.E., Anderson, A.W., Gore, J.C.: Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging. Magn. Reson. Imaging 34, 8–17 (2016)

    Article  Google Scholar 

  6. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000)

    Article  Google Scholar 

  7. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1744–1757 (2010)

    Article  Google Scholar 

  8. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends® Comput. Graph. Vis. 7, 81–227 (2012)

    Article  MATH  Google Scholar 

  9. Zhang, L., Wang, Q., Gao, Y., Wu, G., Shen, D.: Automatic labeling of MR brain images by hierarchical learning of atlas forests. Med. Phys. 43, 1175–1186 (2016)

    Article  Google Scholar 

  10. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., Consortium, W.U.-M.H.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  11. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. N. Am. 15, 869–877 (2005)

    Article  Google Scholar 

  12. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62, 782–790 (2012)

    Article  Google Scholar 

  13. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single-and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64, 554–566 (2010)

    Google Scholar 

  14. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinform. 23, 2507–2517 (2007)

    Article  Google Scholar 

  15. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, L., Zhang, H., Chen, X., Wang, Q., Yap, PT., Shen, D. (2017). Learning-Based Estimation of Functional Correlation Tensors in White Matter for Early Diagnosis of Mild Cognitive Impairment. In: Wu, G., Munsell, B., Zhan, Y., Bai, W., Sanroma, G., Coupé, P. (eds) Patch-Based Techniques in Medical Imaging. Patch-MI 2017. Lecture Notes in Computer Science(), vol 10530. Springer, Cham. https://doi.org/10.1007/978-3-319-67434-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67434-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67433-9

  • Online ISBN: 978-3-319-67434-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics