Skip to main content

A Computational Aeroelastic Framework for Studying Non-conventional Aeronautical Systems

  • Conference paper
  • First Online:
Multibody Mechatronic Systems (MuSMe 2017)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 54))

Included in the following conference series:

  • 1723 Accesses

Abstract

A computational co-simulation framework to study the aeroelastic behavior of a variety of aeronautical systems characterized by highly flexible structures undergoing complex motions in space and immersed in a low-subsonic flow is presented. The authors combine a non-linear aerodynamic model based on an extended version of the unsteady vortex-lattice method with a non-linear structural model based on a segregated formulation of Lagrange’s equations obtained with the Floating Frame of Reference formalism. The structural model construction allows for hybrid combinations of different models typically used with multi-body systems, such as models based on rigid-body dynamics, assumed-modes techniques, and finite-element methods. The governing equations are numerically integrated in the time domain to obtain the structural response and the consistent flowfield around it. The integration is based on the fourth-order predictor-corrector method of Hamming. The findings are found to capture known non-linear behavior of these non-conventional flight systems. The developed framework should be relevant for conducting aeroelastic studies on a wide variety of aeronautical systems such as: micro-air-vehicles (MAVs) inspired by biology, morphing wings, and joined-wing aircrafts, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucia, D.J.: The sensorcraft configurations: a non-linear aeroservoelastic challenge for aviation. In: Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2005-1943, Austin, TX, USA, 18–21 April 2005

    Google Scholar 

  2. Cavallaro, R., Demasi, L.: Challenges, ideas, and innovations of joined-wings configurations: a concept from the past, and opportunity for the future. Prog. Aerosp. Sci. 87, 1–93 (2016)

    Article  Google Scholar 

  3. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., Inman, D.J.: A review of morphing aircraft. J. Intell. Mater. Syst. Struct. 22, 823–877 (2011)

    Article  Google Scholar 

  4. Valasek, J.: Morphing Aerospace Vehicles and Structures. Wiley, UK (2012)

    Book  Google Scholar 

  5. Lentink, D., Biewener, A.A.: Nature-inspired flight – beyond the leap. Bioinspir. Biomim. 5, 040201 (2010). 9 pp.

    Article  Google Scholar 

  6. Taha, H.E., Hajj, M.R., Nayfeh, A.H.: Flight dynamics and control of flapping-wing MAVs: a review. J. Nonlinear Dyn. 70(2), 907–939 (2012)

    Article  MathSciNet  Google Scholar 

  7. Baldelli, D.H., Chen, P.C., Panza, J.: Unified aeroelastic and flight dynamic formulation via rational function approximations. J. Aircr. 43(3), 763–772 (2006)

    Article  Google Scholar 

  8. Varello, A., Carrera, E., Demasi, L.: Vortex lattice method coupled with advanced one-dimensional structural models. ASD J. 2(2), 53–78 (2011)

    Google Scholar 

  9. De Souza, C.E., da Silva, R.G.A., Cesnik, C.E.S.: Nonlinear aeroelastic framework based on vortex lattice method and co-rotational shell finite element. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2012-1976, Honolulu, Hawaii, USA, 23–26 April 2012

    Google Scholar 

  10. Hallissy, B.P., Cesnik, C.E.S.: High-fidelity aeroelastic analysis of very flexible aircraft. In: 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, AIAA Paper 2011-1914, Denver, Colorado, USA, 4–7 April 2011

    Google Scholar 

  11. Zhao, Z., Ren, G.: Multibody dynamic approach of flight dynamics and nonlinear aeroelasticity of flexible aircraft. AIAA J. 49(1), 41–54 (2011)

    Article  Google Scholar 

  12. Thwapiah, G., Campanile, L.F.: Nonlinear aeroelastic behavior of compliant airfoils. Smart Mater. Struct. 19, 035020 (2010)

    Article  Google Scholar 

  13. Wang, I., Gibbs, S.C., Dowell, E.H.: Aeroelastic model of multi segmented folding wings: theory and experiment. J. Aircr. 42(2), 911–921 (2012)

    Article  Google Scholar 

  14. Hu, H., Yang, Z., Gu, Y.: Aeroelastic study for folding wing during the morphing process. J. Sound Vib. 365, 216–229 (2016)

    Article  Google Scholar 

  15. Kim, D.K., Lee, J.S., Lee, J.Y., Han J.H.: An aeroelastic analysis of a flexible flapping wing using modified strip theory. In: SPIE 15th Annual Symposium Smart Structures and Materials, vol. 6928 (2008)

    Google Scholar 

  16. Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231, 1822–1847 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chimakurthi, S.K., Stanford, B.K., Cesnik, C.E.S., Shyy, W.: Flapping wing CFD/CSD aeroelastic formulation based on a co-rotational shell finite element. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2009-2412, Palm Springs, California, USA, 4–7 May 2009

    Google Scholar 

  18. Unger, R., Haupt, M.C., Horst, P., Radespiel, R.: Fluid-structure analysis of a flexible flapping airfoil at low Reynolds number flow. J. Fluid Struct. 28, 72–88 (2012)

    Article  Google Scholar 

  19. Ghommem, M., Hajj, M.R., Mook, D.T., Stanford, B.K., Beran, P.S., Snyder, R.D., Watson, L.T.: Global optimization of actively morphing flapping wings. J. Fluids Struct. 33, 210–228 (2012)

    Article  Google Scholar 

  20. Roccia, B.A., Preidikman, S., Massa, J.C., Mook, D.T.: A modified unsteady vortex-lattice method to study the aerodynamics of flapping wings in hover flight. AIAA J. 51(11), 2628–2642 (2013)

    Article  Google Scholar 

  21. Wie, S.Y., Lee, S., Lee, D.J.: Potential panel and time-marching free-wake coupling analysis for helicopter rotor. J. Aircr. 46(3), 1030–1041 (2009)

    Article  Google Scholar 

  22. Verstraete, M.L., Preidikman, S., Roccia, B.A., Mook, D.T.: A numerical model to study the nonlinear and unsteady aerodynamics of bioinspired morphing-wing concepts. Int. J. Micro Air Vehicles 7(3), 327–345 (2015)

    Article  Google Scholar 

  23. Preidikman, S., Mook, D.T.: Time-Domain simulations of linear and non–linear aeroelastic behavior. J. Vib. Control 6(8), 1135–1176 (2000)

    Article  Google Scholar 

  24. Preidikman, S.: Numerical Simulations of Interactions Among Aerodynamics, Structural Dynamics, and Control Systems. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg (1998)

    Google Scholar 

  25. Kalmar-Nagy, T., Stanciulescu, I.: Can complex systems really be simulated? Appl. Math. Comput. 227, 199–211 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Roccia, B.A., Preidikman, S., Balachandran, B.: Computational dynamics of flapping wings in hover flight: a co-simulation strategy. AIAA J. (2017, in press)

    Google Scholar 

  27. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  28. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and Applications of Finite Element Analysis, 4th edn. Wiley, New York (2001)

    Google Scholar 

  29. Beckert, A., Wendland, H.: Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp. Sci. Technol. 5, 125–134 (2001)

    Article  MATH  Google Scholar 

  30. Roccia, B.A., Preidikman, S., Verstraete, M.L., Mook, D.T.: Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings. J. Aerosp. Eng. (ASCE) 30(1), 1–17 (2016). Paper 04016079

    Google Scholar 

  31. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in drosophila. J. Exp. Biol. 208, 2303–2318 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial support received from the Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina, the U.S. National Science Foundation through Grant No. CMMI-1250187, the U.S. Air Force Office of Scientific Research through Grant No. FA95501510134, and the Minta Martin Foundation. In addition, the authors would like to thank the Grupo de Matemática Aplicada (GMA), Engineering School, Universidad Nacional de Río Cuarto, Argentina.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Preidikman, S., Roccia, B.A., Verstraete, M.L., Ceballos, L.R., Balachandran, B. (2018). A Computational Aeroelastic Framework for Studying Non-conventional Aeronautical Systems. In: Carvalho, J., Martins, D., Simoni, R., Simas, H. (eds) Multibody Mechatronic Systems. MuSMe 2017. Mechanisms and Machine Science, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-67567-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67567-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67566-4

  • Online ISBN: 978-3-319-67567-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics